Comparison of Sensitivity, Specificity, and Negative Likelihood Ratio with Deep Learning Models. Metrics are reported as point estimates with 95% CIs. This analysis extends the performance comparison to metrics paramount for clinical application. The proposed model achieves a competitive balance of these metrics against deep learning benchmarks. It attains the highest specificity (98.7%), minimizing false alarms, and a low Negative Likelihood Ratio (0.036), which is comparable to the best deep learning results. This demonstrates that the hybrid framework provides a highly reliable and efficient tool for clinical decision-making.
<p>Comparison of Sensitivity, Specificity, and Negative Likelihood Ratio with Deep Learning Models. Metrics are reported as point estimates with 95% CIs. This analysis extends the performance comparison to metrics paramount for clinical application. The proposed model achieves a competitive ba...
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
كن أول من يترك تعليقا!