Comparison of Sensitivity, Specificity, and Negative Likelihood Ratio with Deep Learning Models. Metrics are reported as point estimates with 95% CIs. This analysis extends the performance comparison to metrics paramount for clinical application. The proposed model achieves a competitive balance of these metrics against deep learning benchmarks. It attains the highest specificity (98.7%), minimizing false alarms, and a low Negative Likelihood Ratio (0.036), which is comparable to the best deep learning results. This demonstrates that the hybrid framework provides a highly reliable and efficient tool for clinical decision-making.

<p>Comparison of Sensitivity, Specificity, and Negative Likelihood Ratio with Deep Learning Models. Metrics are reported as point estimates with 95% CIs. This analysis extends the performance comparison to metrics paramount for clinical application. The proposed model achieves a competitive ba...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Medhat A. Tawfeek (22522087) (author)
مؤلفون آخرون: Ibrahim Alrashdi (22522090) (author), Madallah Alruwaili (22522093) (author), Hisham Allahem (22522096) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!