Mean expression levels of biomarker genes across various disease states.

<p>The line plot illustrates the state-wise mean expression of 11 biomarker genes identified as differentially expressed (DEGs) in the study. To improve clarity and minimize visual clutter, only the DEGs among the chosen biomarkers are shown—genes exclusively from the KEGG gastric cancer pathw...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Fatemeh Keikha (20917848) (author)
Další autoři: Chuanyuan Wang (22676721) (author), Zhixia Yang (3180567) (author), Zhi-Ping Liu (149304) (author)
Vydáno: 2025
Témata:
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
_version_ 1849927641124044800
author Fatemeh Keikha (20917848)
author2 Chuanyuan Wang (22676721)
Zhixia Yang (3180567)
Zhi-Ping Liu (149304)
author2_role author
author
author
author_facet Fatemeh Keikha (20917848)
Chuanyuan Wang (22676721)
Zhixia Yang (3180567)
Zhi-Ping Liu (149304)
author_role author
dc.creator.none.fl_str_mv Fatemeh Keikha (20917848)
Chuanyuan Wang (22676721)
Zhixia Yang (3180567)
Zhi-Ping Liu (149304)
dc.date.none.fl_str_mv 2025-11-24T18:36:31Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013743.s004
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Mean_expression_levels_of_biomarker_genes_across_various_disease_states_/30697935
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Medicine
Genetics
Biotechnology
Cancer
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
wasserstein optimal transport
real world dataset
quantified via gromov
enhancing diagnostic precision
dynamic network index
deep neural network
ablation studies confirm
regulatory role transitions
gene regulatory networks
combining regulatory rewiring
analyzing disease evolution
temporal expression dynamics
reflect dynamic changes
neglecting structural rewiring
multilayer network models
modeling disease progression
state alignment provides
understanding cancer progression
state graph alignment
disease state classification
state specific biomarkers
disease progression
state alignment
specific expression
multilayer graph
cancer progression
disease state
regulatory variability
regulatory roles
structural shifts
significant changes
prioritized biomarkers
classification accuracy
state single
xlink ">
topological features
synthetic simulated
ranked using
powerful strategy
overall performance
meaningful shifts
gats ),
gastric adenocarcinoma
gac ),
framework designed
findings suggest
dni ),
distinct layer
contextualized embeddings
cell data
dc.title.none.fl_str_mv Mean expression levels of biomarker genes across various disease states.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The line plot illustrates the state-wise mean expression of 11 biomarker genes identified as differentially expressed (DEGs) in the study. To improve clarity and minimize visual clutter, only the DEGs among the chosen biomarkers are shown—genes exclusively from the KEGG gastric cancer pathway are excluded from this figure.</p> <p>(EPS)</p>
eu_rights_str_mv openAccess
id Manara_60a6058c60300b9b1b7c3ad24de243d0
identifier_str_mv 10.1371/journal.pcbi.1013743.s004
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697935
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Mean expression levels of biomarker genes across various disease states.Fatemeh Keikha (20917848)Chuanyuan Wang (22676721)Zhixia Yang (3180567)Zhi-Ping Liu (149304)MedicineGeneticsBiotechnologyCancerInfectious DiseasesBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedwasserstein optimal transportreal world datasetquantified via gromovenhancing diagnostic precisiondynamic network indexdeep neural networkablation studies confirmregulatory role transitionsgene regulatory networkscombining regulatory rewiringanalyzing disease evolutiontemporal expression dynamicsreflect dynamic changesneglecting structural rewiringmultilayer network modelsmodeling disease progressionstate alignment providesunderstanding cancer progressionstate graph alignmentdisease state classificationstate specific biomarkersdisease progressionstate alignmentspecific expressionmultilayer graphcancer progressiondisease stateregulatory variabilityregulatory rolesstructural shiftssignificant changesprioritized biomarkersclassification accuracystate singlexlink ">topological featuressynthetic simulatedranked usingpowerful strategyoverall performancemeaningful shiftsgats ),gastric adenocarcinomagac ),framework designedfindings suggestdni ),distinct layercontextualized embeddingscell data<p>The line plot illustrates the state-wise mean expression of 11 biomarker genes identified as differentially expressed (DEGs) in the study. To improve clarity and minimize visual clutter, only the DEGs among the chosen biomarkers are shown—genes exclusively from the KEGG gastric cancer pathway are excluded from this figure.</p> <p>(EPS)</p>2025-11-24T18:36:31ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pcbi.1013743.s004https://figshare.com/articles/figure/Mean_expression_levels_of_biomarker_genes_across_various_disease_states_/30697935CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306979352025-11-24T18:36:31Z
spellingShingle Mean expression levels of biomarker genes across various disease states.
Fatemeh Keikha (20917848)
Medicine
Genetics
Biotechnology
Cancer
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
wasserstein optimal transport
real world dataset
quantified via gromov
enhancing diagnostic precision
dynamic network index
deep neural network
ablation studies confirm
regulatory role transitions
gene regulatory networks
combining regulatory rewiring
analyzing disease evolution
temporal expression dynamics
reflect dynamic changes
neglecting structural rewiring
multilayer network models
modeling disease progression
state alignment provides
understanding cancer progression
state graph alignment
disease state classification
state specific biomarkers
disease progression
state alignment
specific expression
multilayer graph
cancer progression
disease state
regulatory variability
regulatory roles
structural shifts
significant changes
prioritized biomarkers
classification accuracy
state single
xlink ">
topological features
synthetic simulated
ranked using
powerful strategy
overall performance
meaningful shifts
gats ),
gastric adenocarcinoma
gac ),
framework designed
findings suggest
dni ),
distinct layer
contextualized embeddings
cell data
status_str publishedVersion
title Mean expression levels of biomarker genes across various disease states.
title_full Mean expression levels of biomarker genes across various disease states.
title_fullStr Mean expression levels of biomarker genes across various disease states.
title_full_unstemmed Mean expression levels of biomarker genes across various disease states.
title_short Mean expression levels of biomarker genes across various disease states.
title_sort Mean expression levels of biomarker genes across various disease states.
topic Medicine
Genetics
Biotechnology
Cancer
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
wasserstein optimal transport
real world dataset
quantified via gromov
enhancing diagnostic precision
dynamic network index
deep neural network
ablation studies confirm
regulatory role transitions
gene regulatory networks
combining regulatory rewiring
analyzing disease evolution
temporal expression dynamics
reflect dynamic changes
neglecting structural rewiring
multilayer network models
modeling disease progression
state alignment provides
understanding cancer progression
state graph alignment
disease state classification
state specific biomarkers
disease progression
state alignment
specific expression
multilayer graph
cancer progression
disease state
regulatory variability
regulatory roles
structural shifts
significant changes
prioritized biomarkers
classification accuracy
state single
xlink ">
topological features
synthetic simulated
ranked using
powerful strategy
overall performance
meaningful shifts
gats ),
gastric adenocarcinoma
gac ),
framework designed
findings suggest
dni ),
distinct layer
contextualized embeddings
cell data