Distribution of average recognition error rates on the benchmark dataset when repeatedly implementing the hyperparameter-tuning method using <i>n</i> labeled images 1000 times.

<p>In each replicate, a few (1, 3, 5, 10, 20, 30, or 50) images are randomly selected from the benchmark dataset, and <i>λ</i> is tuned for each image to a proper value so that MCount gives the same counting number as the label. Then, the average of <i>λ</i> is chosen f...

Full description

Saved in:
Bibliographic Details
Main Author: Sijie Chen (1622476) (author)
Other Authors: Po-Hsun Huang (183737) (author), Hyungseok Kim (14635448) (author), Yuhe Cui (20902959) (author), Cullen R. Buie (471587) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852021995939561472
author Sijie Chen (1622476)
author2 Po-Hsun Huang (183737)
Hyungseok Kim (14635448)
Yuhe Cui (20902959)
Cullen R. Buie (471587)
author2_role author
author
author
author
author_facet Sijie Chen (1622476)
Po-Hsun Huang (183737)
Hyungseok Kim (14635448)
Yuhe Cui (20902959)
Cullen R. Buie (471587)
author_role author
dc.creator.none.fl_str_mv Sijie Chen (1622476)
Po-Hsun Huang (183737)
Hyungseok Kim (14635448)
Yuhe Cui (20902959)
Cullen R. Buie (471587)
dc.date.none.fl_str_mv 2025-03-19T17:33:44Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0311242.g005
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Distribution_of_average_recognition_error_rates_on_the_benchmark_dataset_when_repeatedly_implementing_the_hyperparameter-tuning_method_using_i_n_i_labeled_images_1000_times_/28626564
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biophysics
Biochemistry
Molecular Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
escherichia coli </
average error rate
assessing microbial growth
requires two hyperparameters
regional candidate circles
propose statistical methods
efficient colony counting
limited labeled data
div >< p
54 %), autocellseg
accurate colony counting
colony counting
54 %),
regional algorithms
hyperparameters using
propose mcount
throughput workflows
throughput plating
promising solution
precisely labeled
merged colonies
known solution
facilitate deployment
contour information
common occurrence
accurately infer
960 images
847 segments
31 %).
dc.title.none.fl_str_mv Distribution of average recognition error rates on the benchmark dataset when repeatedly implementing the hyperparameter-tuning method using <i>n</i> labeled images 1000 times.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>In each replicate, a few (1, 3, 5, 10, 20, 30, or 50) images are randomly selected from the benchmark dataset, and <i>λ</i> is tuned for each image to a proper value so that MCount gives the same counting number as the label. Then, the average of <i>λ</i> is chosen for this replicate, and the average recognition error rate is calculated on the benchmark using this <i>λ</i>. By simulating this procedure for 1000 replicates, we can plot the distribution of average recognition error rates. As expected, increasing <i>n</i> results in a narrower distribution of average recognition error rates, leading to more consistent performance. Note that when , all recognition errors fall in the range of 3.5% to 13% with a mean of 5.17% (median of 4.77%), much lower than the recognition error rate of NICE at 16.54% (15.79%).</p>
eu_rights_str_mv openAccess
id Manara_6777ff630c8a3ddef96cfceedea39a7c
identifier_str_mv 10.1371/journal.pone.0311242.g005
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28626564
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Distribution of average recognition error rates on the benchmark dataset when repeatedly implementing the hyperparameter-tuning method using <i>n</i> labeled images 1000 times.Sijie Chen (1622476)Po-Hsun Huang (183737)Hyungseok Kim (14635448)Yuhe Cui (20902959)Cullen R. Buie (471587)BiophysicsBiochemistryMolecular BiologyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedescherichia coli </average error rateassessing microbial growthrequires two hyperparametersregional candidate circlespropose statistical methodsefficient colony countinglimited labeled datadiv >< p54 %), autocellsegaccurate colony countingcolony counting54 %),regional algorithmshyperparameters usingpropose mcountthroughput workflowsthroughput platingpromising solutionprecisely labeledmerged coloniesknown solutionfacilitate deploymentcontour informationcommon occurrenceaccurately infer960 images847 segments31 %).<p>In each replicate, a few (1, 3, 5, 10, 20, 30, or 50) images are randomly selected from the benchmark dataset, and <i>λ</i> is tuned for each image to a proper value so that MCount gives the same counting number as the label. Then, the average of <i>λ</i> is chosen for this replicate, and the average recognition error rate is calculated on the benchmark using this <i>λ</i>. By simulating this procedure for 1000 replicates, we can plot the distribution of average recognition error rates. As expected, increasing <i>n</i> results in a narrower distribution of average recognition error rates, leading to more consistent performance. Note that when , all recognition errors fall in the range of 3.5% to 13% with a mean of 5.17% (median of 4.77%), much lower than the recognition error rate of NICE at 16.54% (15.79%).</p>2025-03-19T17:33:44ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0311242.g005https://figshare.com/articles/figure/Distribution_of_average_recognition_error_rates_on_the_benchmark_dataset_when_repeatedly_implementing_the_hyperparameter-tuning_method_using_i_n_i_labeled_images_1000_times_/28626564CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/286265642025-03-19T17:33:44Z
spellingShingle Distribution of average recognition error rates on the benchmark dataset when repeatedly implementing the hyperparameter-tuning method using <i>n</i> labeled images 1000 times.
Sijie Chen (1622476)
Biophysics
Biochemistry
Molecular Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
escherichia coli </
average error rate
assessing microbial growth
requires two hyperparameters
regional candidate circles
propose statistical methods
efficient colony counting
limited labeled data
div >< p
54 %), autocellseg
accurate colony counting
colony counting
54 %),
regional algorithms
hyperparameters using
propose mcount
throughput workflows
throughput plating
promising solution
precisely labeled
merged colonies
known solution
facilitate deployment
contour information
common occurrence
accurately infer
960 images
847 segments
31 %).
status_str publishedVersion
title Distribution of average recognition error rates on the benchmark dataset when repeatedly implementing the hyperparameter-tuning method using <i>n</i> labeled images 1000 times.
title_full Distribution of average recognition error rates on the benchmark dataset when repeatedly implementing the hyperparameter-tuning method using <i>n</i> labeled images 1000 times.
title_fullStr Distribution of average recognition error rates on the benchmark dataset when repeatedly implementing the hyperparameter-tuning method using <i>n</i> labeled images 1000 times.
title_full_unstemmed Distribution of average recognition error rates on the benchmark dataset when repeatedly implementing the hyperparameter-tuning method using <i>n</i> labeled images 1000 times.
title_short Distribution of average recognition error rates on the benchmark dataset when repeatedly implementing the hyperparameter-tuning method using <i>n</i> labeled images 1000 times.
title_sort Distribution of average recognition error rates on the benchmark dataset when repeatedly implementing the hyperparameter-tuning method using <i>n</i> labeled images 1000 times.
topic Biophysics
Biochemistry
Molecular Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
escherichia coli </
average error rate
assessing microbial growth
requires two hyperparameters
regional candidate circles
propose statistical methods
efficient colony counting
limited labeled data
div >< p
54 %), autocellseg
accurate colony counting
colony counting
54 %),
regional algorithms
hyperparameters using
propose mcount
throughput workflows
throughput plating
promising solution
precisely labeled
merged colonies
known solution
facilitate deployment
contour information
common occurrence
accurately infer
960 images
847 segments
31 %).