Comparison C<sub>p</sub> for training and test sets across ML models.

<p>Comparison C<sub>p</sub> for training and test sets across ML models.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: R. S. Jayaram (22139155) (author)
مؤلفون آخرون: P. Saravanamuthukumar (22139158) (author), Ahmad Baharuddin Abdullah (22139161) (author), Ramalingam Krishnamoorthy (22139164) (author), Sandip Kunar (22139167) (author), Xu Yong (12675832) (author), S. Prabhakar (20051421) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852017211200241664
author R. S. Jayaram (22139155)
author2 P. Saravanamuthukumar (22139158)
Ahmad Baharuddin Abdullah (22139161)
Ramalingam Krishnamoorthy (22139164)
Sandip Kunar (22139167)
Xu Yong (12675832)
S. Prabhakar (20051421)
author2_role author
author
author
author
author
author
author_facet R. S. Jayaram (22139155)
P. Saravanamuthukumar (22139158)
Ahmad Baharuddin Abdullah (22139161)
Ramalingam Krishnamoorthy (22139164)
Sandip Kunar (22139167)
Xu Yong (12675832)
S. Prabhakar (20051421)
author_role author
dc.creator.none.fl_str_mv R. S. Jayaram (22139155)
P. Saravanamuthukumar (22139158)
Ahmad Baharuddin Abdullah (22139161)
Ramalingam Krishnamoorthy (22139164)
Sandip Kunar (22139167)
Xu Yong (12675832)
S. Prabhakar (20051421)
dc.date.none.fl_str_mv 2025-08-28T17:35:22Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0330625.g010
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Comparison_C_sub_p_sub_for_training_and_test_sets_across_ML_models_/30004411
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Science Policy
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
traditional taguchi method
shap analysis indicated
namely print speed
improved mechanical performance
brought significant changes
216 ° c
lowest error metrics
functionally graded multi
div >< p
2 </ sup
lower error
low error
study focuses
produce intricate
printing temperature
polynomial regression
performed best
manufacturing sectors
layered designs
influential parameter
greater ease
fgms suitable
fff process
experimentally validated
compressive strength
8 mpa
74 mpa
6 ).
44 %.
3d printing
36 mpa
19 mm
dc.title.none.fl_str_mv Comparison C<sub>p</sub> for training and test sets across ML models.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Comparison C<sub>p</sub> for training and test sets across ML models.</p>
eu_rights_str_mv openAccess
id Manara_69b2f376f79d3208bfcaaed00cdbdc0e
identifier_str_mv 10.1371/journal.pone.0330625.g010
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30004411
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Comparison C<sub>p</sub> for training and test sets across ML models.R. S. Jayaram (22139155)P. Saravanamuthukumar (22139158)Ahmad Baharuddin Abdullah (22139161)Ramalingam Krishnamoorthy (22139164)Sandip Kunar (22139167)Xu Yong (12675832)S. Prabhakar (20051421)Science PolicySpace ScienceEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedtraditional taguchi methodshap analysis indicatednamely print speedimproved mechanical performancebrought significant changes216 ° clowest error metricsfunctionally graded multidiv >< p2 </ suplower errorlow errorstudy focusesproduce intricateprinting temperaturepolynomial regressionperformed bestmanufacturing sectorslayered designsinfluential parametergreater easefgms suitablefff processexperimentally validatedcompressive strength8 mpa74 mpa6 ).44 %.3d printing36 mpa19 mm<p>Comparison C<sub>p</sub> for training and test sets across ML models.</p>2025-08-28T17:35:22ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0330625.g010https://figshare.com/articles/figure/Comparison_C_sub_p_sub_for_training_and_test_sets_across_ML_models_/30004411CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/300044112025-08-28T17:35:22Z
spellingShingle Comparison C<sub>p</sub> for training and test sets across ML models.
R. S. Jayaram (22139155)
Science Policy
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
traditional taguchi method
shap analysis indicated
namely print speed
improved mechanical performance
brought significant changes
216 ° c
lowest error metrics
functionally graded multi
div >< p
2 </ sup
lower error
low error
study focuses
produce intricate
printing temperature
polynomial regression
performed best
manufacturing sectors
layered designs
influential parameter
greater ease
fgms suitable
fff process
experimentally validated
compressive strength
8 mpa
74 mpa
6 ).
44 %.
3d printing
36 mpa
19 mm
status_str publishedVersion
title Comparison C<sub>p</sub> for training and test sets across ML models.
title_full Comparison C<sub>p</sub> for training and test sets across ML models.
title_fullStr Comparison C<sub>p</sub> for training and test sets across ML models.
title_full_unstemmed Comparison C<sub>p</sub> for training and test sets across ML models.
title_short Comparison C<sub>p</sub> for training and test sets across ML models.
title_sort Comparison C<sub>p</sub> for training and test sets across ML models.
topic Science Policy
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
traditional taguchi method
shap analysis indicated
namely print speed
improved mechanical performance
brought significant changes
216 ° c
lowest error metrics
functionally graded multi
div >< p
2 </ sup
lower error
low error
study focuses
produce intricate
printing temperature
polynomial regression
performed best
manufacturing sectors
layered designs
influential parameter
greater ease
fgms suitable
fff process
experimentally validated
compressive strength
8 mpa
74 mpa
6 ).
44 %.
3d printing
36 mpa
19 mm