Comparison of MRL-STDP with DQN and PPO.
<div><p>This research explores the potential of combining Meta Reinforcement Learning (MRL) with Spike-Timing-Dependent Plasticity (STDP) to enhance the performance and adaptability of AI agents in Atari game settings. Our methodology leverages MRL to swiftly adjust agent strategies acro...
محفوظ في:
| المؤلف الرئيسي: | Liu Liu (512237) (author) |
|---|---|
| مؤلفون آخرون: | Zhifei Xu (540854) (author) |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Adaptation performance of different models in new games.
حسب: Liu Liu (512237)
منشور في: (2025) -
Performance comparison of different algorithms in Atari games.
حسب: Liu Liu (512237)
منشور في: (2025) -
Heatmaps displaying the distribution of values obtained from nine separate experiments, each divided into multiple segments labeled N, O, P, Q, and R, corresponding to different conditions or parameters tested within each experiment.
حسب: Liu Liu (512237)
منشور في: (2025) -
Real-time inference.
حسب: Liu Liu (512237)
منشور في: (2025) -
Comparison of Mean Absolute Error (MAE) in Millimeters as a Function of Kernel Size.
حسب: Liu Liu (512237)
منشور في: (2025)