CASynergy algorithm workflow.

<p><b>(a)</b> Cell line-specific gene network extraction module: Using the expression data of key genes in the cell line and the PPI network , a disease-specific topological network is constructed; <b>(b)</b> Drug and cell line feature extraction and fusion module: The...

Full description

Saved in:
Bibliographic Details
Main Author: Haitao Li (305080) (author)
Other Authors: Long Zheng (694761) (author), Lei Li (29537) (author), Yiwei Chen (383344) (author), Junjie Li (12724) (author), Chunhou Zheng (15936521) (author), Yansen Su (459998) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852015764089864192
author Haitao Li (305080)
author2 Long Zheng (694761)
Lei Li (29537)
Yiwei Chen (383344)
Junjie Li (12724)
Chunhou Zheng (15936521)
Yansen Su (459998)
author2_role author
author
author
author
author
author
author_facet Haitao Li (305080)
Long Zheng (694761)
Lei Li (29537)
Yiwei Chen (383344)
Junjie Li (12724)
Chunhou Zheng (15936521)
Yansen Su (459998)
author_role author
dc.creator.none.fl_str_mv Haitao Li (305080)
Long Zheng (694761)
Lei Li (29537)
Yiwei Chen (383344)
Junjie Li (12724)
Chunhou Zheng (15936521)
Yansen Su (459998)
dc.date.none.fl_str_mv 2025-10-15T17:42:40Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013567.g001
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/CASynergy_algorithm_workflow_/30368514
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Medicine
Genetics
Pharmacology
Biotechnology
Cancer
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
unique molecular context
improve treatment efficacy
specific molecular interactions
complex biological interactions
attention synergy ),
two benchmark datasets
provides interpretable insights
personalized cancer treatment
causal attention model
causal attention mechanism
improvements allow casynergy
cancer cell line
causal attention
cell line
gene interactions
attention module
multimodal datasets
interpretable prediction
yet suffer
tumor heterogeneity
reliable way
propose casynergy
promising strategy
prior approaches
overcome resistance
inadequate modeling
challenging due
casynergy offers
casynergy introduces
art models
addresses limitations
dc.title.none.fl_str_mv CASynergy algorithm workflow.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p><b>(a)</b> Cell line-specific gene network extraction module: Using the expression data of key genes in the cell line and the PPI network , a disease-specific topological network is constructed; <b>(b)</b> Drug and cell line feature extraction and fusion module: The fusion of drug combination features and disease cell line features forms a semantic network; <b>(c)</b> Drug combination synergy prediction module based on causal attention learning: By combining the topological and semantic networks, and utilizing a causal inference-based attention mechanism, the synergy of drug combinations is predicted.</p>
eu_rights_str_mv openAccess
id Manara_6a18d7cd17a06920229e8cf1663ae5f1
identifier_str_mv 10.1371/journal.pcbi.1013567.g001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30368514
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling CASynergy algorithm workflow.Haitao Li (305080)Long Zheng (694761)Lei Li (29537)Yiwei Chen (383344)Junjie Li (12724)Chunhou Zheng (15936521)Yansen Su (459998)BiochemistryMedicineGeneticsPharmacologyBiotechnologyCancerBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedunique molecular contextimprove treatment efficacyspecific molecular interactionscomplex biological interactionsattention synergy ),two benchmark datasetsprovides interpretable insightspersonalized cancer treatmentcausal attention modelcausal attention mechanismimprovements allow casynergycancer cell linecausal attentioncell linegene interactionsattention modulemultimodal datasetsinterpretable predictionyet suffertumor heterogeneityreliable waypropose casynergypromising strategyprior approachesovercome resistanceinadequate modelingchallenging duecasynergy offerscasynergy introducesart modelsaddresses limitations<p><b>(a)</b> Cell line-specific gene network extraction module: Using the expression data of key genes in the cell line and the PPI network , a disease-specific topological network is constructed; <b>(b)</b> Drug and cell line feature extraction and fusion module: The fusion of drug combination features and disease cell line features forms a semantic network; <b>(c)</b> Drug combination synergy prediction module based on causal attention learning: By combining the topological and semantic networks, and utilizing a causal inference-based attention mechanism, the synergy of drug combinations is predicted.</p>2025-10-15T17:42:40ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pcbi.1013567.g001https://figshare.com/articles/figure/CASynergy_algorithm_workflow_/30368514CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/303685142025-10-15T17:42:40Z
spellingShingle CASynergy algorithm workflow.
Haitao Li (305080)
Biochemistry
Medicine
Genetics
Pharmacology
Biotechnology
Cancer
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
unique molecular context
improve treatment efficacy
specific molecular interactions
complex biological interactions
attention synergy ),
two benchmark datasets
provides interpretable insights
personalized cancer treatment
causal attention model
causal attention mechanism
improvements allow casynergy
cancer cell line
causal attention
cell line
gene interactions
attention module
multimodal datasets
interpretable prediction
yet suffer
tumor heterogeneity
reliable way
propose casynergy
promising strategy
prior approaches
overcome resistance
inadequate modeling
challenging due
casynergy offers
casynergy introduces
art models
addresses limitations
status_str publishedVersion
title CASynergy algorithm workflow.
title_full CASynergy algorithm workflow.
title_fullStr CASynergy algorithm workflow.
title_full_unstemmed CASynergy algorithm workflow.
title_short CASynergy algorithm workflow.
title_sort CASynergy algorithm workflow.
topic Biochemistry
Medicine
Genetics
Pharmacology
Biotechnology
Cancer
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
unique molecular context
improve treatment efficacy
specific molecular interactions
complex biological interactions
attention synergy ),
two benchmark datasets
provides interpretable insights
personalized cancer treatment
causal attention model
causal attention mechanism
improvements allow casynergy
cancer cell line
causal attention
cell line
gene interactions
attention module
multimodal datasets
interpretable prediction
yet suffer
tumor heterogeneity
reliable way
propose casynergy
promising strategy
prior approaches
overcome resistance
inadequate modeling
challenging due
casynergy offers
casynergy introduces
art models
addresses limitations