Model fit comparisons for primary model and sensitivity analyses.
<p>Model fit comparisons for primary model and sensitivity analyses.</p>
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , , |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| _version_ | 1852020453307056128 |
|---|---|
| author | Benjamin A. Hives (5592104) |
| author2 | Mark R. Beauchamp (3639685) Yan Liu (25061) Jordan Weiss (7504538) Eli Puterman (339936) |
| author2_role | author author author author |
| author_facet | Benjamin A. Hives (5592104) Mark R. Beauchamp (3639685) Yan Liu (25061) Jordan Weiss (7504538) Eli Puterman (339936) |
| author_role | author |
| dc.creator.none.fl_str_mv | Benjamin A. Hives (5592104) Mark R. Beauchamp (3639685) Yan Liu (25061) Jordan Weiss (7504538) Eli Puterman (339936) |
| dc.date.none.fl_str_mv | 2025-05-14T00:09:08Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pone.0323197.t004 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/dataset/Model_fit_comparisons_for_primary_model_and_sensitivity_analyses_/29058549 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Sociology Inorganic Chemistry Science Policy Mental Health Biological Sciences not elsewhere classified traditional statistical approaches random forest algorithm mental health ’ machine learning using create effective interventions considering complex interactions g ., psychological lower life satisfaction div >< p 2 </ sup greater psychological stress used linear regressions demographic factors ). life satisfaction psychological stress linear associations demographic factors 264 ). stress reduction stress must chronic stress study highlights relative importance public policy primary stressor premature mortality nationally representative multidisciplinary approach multidimensional correlates lesser extent important variable important predictors important correlates findings highlight factors accounted experimental studies employment status effects ranging communicable diseases approximately one analyzed data 85 ), 36 ), |
| dc.title.none.fl_str_mv | Model fit comparisons for primary model and sensitivity analyses. |
| dc.type.none.fl_str_mv | Dataset info:eu-repo/semantics/publishedVersion dataset |
| description | <p>Model fit comparisons for primary model and sensitivity analyses.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_73c82fd29d6dbdff3a6d7ee3219e4be3 |
| identifier_str_mv | 10.1371/journal.pone.0323197.t004 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/29058549 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | Model fit comparisons for primary model and sensitivity analyses.Benjamin A. Hives (5592104)Mark R. Beauchamp (3639685)Yan Liu (25061)Jordan Weiss (7504538)Eli Puterman (339936)SociologyInorganic ChemistryScience PolicyMental HealthBiological Sciences not elsewhere classifiedtraditional statistical approachesrandom forest algorithmmental health ’machine learning usingcreate effective interventionsconsidering complex interactionsg ., psychologicallower life satisfactiondiv >< p2 </ supgreater psychological stressused linear regressionsdemographic factors ).life satisfactionpsychological stresslinear associationsdemographic factors264 ).stress reductionstress mustchronic stressstudy highlightsrelative importancepublic policyprimary stressorpremature mortalitynationally representativemultidisciplinary approachmultidimensional correlateslesser extentimportant variableimportant predictorsimportant correlatesfindings highlightfactors accountedexperimental studiesemployment statuseffects rangingcommunicable diseasesapproximately oneanalyzed data85 ),36 ),<p>Model fit comparisons for primary model and sensitivity analyses.</p>2025-05-14T00:09:08ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0323197.t004https://figshare.com/articles/dataset/Model_fit_comparisons_for_primary_model_and_sensitivity_analyses_/29058549CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/290585492025-05-14T00:09:08Z |
| spellingShingle | Model fit comparisons for primary model and sensitivity analyses. Benjamin A. Hives (5592104) Sociology Inorganic Chemistry Science Policy Mental Health Biological Sciences not elsewhere classified traditional statistical approaches random forest algorithm mental health ’ machine learning using create effective interventions considering complex interactions g ., psychological lower life satisfaction div >< p 2 </ sup greater psychological stress used linear regressions demographic factors ). life satisfaction psychological stress linear associations demographic factors 264 ). stress reduction stress must chronic stress study highlights relative importance public policy primary stressor premature mortality nationally representative multidisciplinary approach multidimensional correlates lesser extent important variable important predictors important correlates findings highlight factors accounted experimental studies employment status effects ranging communicable diseases approximately one analyzed data 85 ), 36 ), |
| status_str | publishedVersion |
| title | Model fit comparisons for primary model and sensitivity analyses. |
| title_full | Model fit comparisons for primary model and sensitivity analyses. |
| title_fullStr | Model fit comparisons for primary model and sensitivity analyses. |
| title_full_unstemmed | Model fit comparisons for primary model and sensitivity analyses. |
| title_short | Model fit comparisons for primary model and sensitivity analyses. |
| title_sort | Model fit comparisons for primary model and sensitivity analyses. |
| topic | Sociology Inorganic Chemistry Science Policy Mental Health Biological Sciences not elsewhere classified traditional statistical approaches random forest algorithm mental health ’ machine learning using create effective interventions considering complex interactions g ., psychological lower life satisfaction div >< p 2 </ sup greater psychological stress used linear regressions demographic factors ). life satisfaction psychological stress linear associations demographic factors 264 ). stress reduction stress must chronic stress study highlights relative importance public policy primary stressor premature mortality nationally representative multidisciplinary approach multidimensional correlates lesser extent important variable important predictors important correlates findings highlight factors accounted experimental studies employment status effects ranging communicable diseases approximately one analyzed data 85 ), 36 ), |