Comparison of the EODA algorithm with existing algorithms in terms of recall.

<p>Comparison of the EODA algorithm with existing algorithms in terms of recall.</p>

Saved in:
Bibliographic Details
Main Author: Sunil Kumar (102321) (author)
Other Authors: Sudeep Varshney (21453384) (author), Usha Jain (21453387) (author), Prashant Johri (21453390) (author), Abdulaziz S. Almazyad (21453393) (author), Ali Wagdy Mohamed (21453396) (author), Mehdi Hosseinzadeh (8383239) (author), Mohammad Shokouhifar (20547564) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852019833716080640
author Sunil Kumar (102321)
author2 Sudeep Varshney (21453384)
Usha Jain (21453387)
Prashant Johri (21453390)
Abdulaziz S. Almazyad (21453393)
Ali Wagdy Mohamed (21453396)
Mehdi Hosseinzadeh (8383239)
Mohammad Shokouhifar (20547564)
author2_role author
author
author
author
author
author
author
author_facet Sunil Kumar (102321)
Sudeep Varshney (21453384)
Usha Jain (21453387)
Prashant Johri (21453390)
Abdulaziz S. Almazyad (21453393)
Ali Wagdy Mohamed (21453396)
Mehdi Hosseinzadeh (8383239)
Mohammad Shokouhifar (20547564)
author_role author
dc.creator.none.fl_str_mv Sunil Kumar (102321)
Sudeep Varshney (21453384)
Usha Jain (21453387)
Prashant Johri (21453390)
Abdulaziz S. Almazyad (21453393)
Ali Wagdy Mohamed (21453396)
Mehdi Hosseinzadeh (8383239)
Mohammad Shokouhifar (20547564)
dc.date.none.fl_str_mv 2025-05-30T17:41:50Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0322738.t012
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Comparison_of_the_EODA_algorithm_with_existing_algorithms_in_terms_of_recall_/29200761
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biotechnology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
nearest neighbors algorithm
nearest neighbor search
nearest neighbor identification
identifying unusual patterns
gained significant attention
disrupt system modeling
53 %, outperforming
07 %, recall
rf feature selection
learning repository datasets
named eoda ),
49 %,
parameter selection
deep learning
significantly deviate
shadow features
second stage
results demonstrate
relevant attributes
rapid growth
random forest
parameter estimation
often limited
normal behavior
inaccurate results
highest z
first stage
existing techniques
eoda approach
enhanced knn
data size
data science
clustering phase
boruta method
dc.title.none.fl_str_mv Comparison of the EODA algorithm with existing algorithms in terms of recall.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Comparison of the EODA algorithm with existing algorithms in terms of recall.</p>
eu_rights_str_mv openAccess
id Manara_73c856d7c46aaaea4a24fdb149a2bfea
identifier_str_mv 10.1371/journal.pone.0322738.t012
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29200761
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Comparison of the EODA algorithm with existing algorithms in terms of recall.Sunil Kumar (102321)Sudeep Varshney (21453384)Usha Jain (21453387)Prashant Johri (21453390)Abdulaziz S. Almazyad (21453393)Ali Wagdy Mohamed (21453396)Mehdi Hosseinzadeh (8383239)Mohammad Shokouhifar (20547564)BiotechnologySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiednearest neighbors algorithmnearest neighbor searchnearest neighbor identificationidentifying unusual patternsgained significant attentiondisrupt system modeling53 %, outperforming07 %, recallrf feature selectionlearning repository datasetsnamed eoda ),49 %,parameter selectiondeep learningsignificantly deviateshadow featuressecond stageresults demonstraterelevant attributesrapid growthrandom forestparameter estimationoften limitednormal behaviorinaccurate resultshighest zfirst stageexisting techniqueseoda approachenhanced knndata sizedata scienceclustering phaseboruta method<p>Comparison of the EODA algorithm with existing algorithms in terms of recall.</p>2025-05-30T17:41:50ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0322738.t012https://figshare.com/articles/dataset/Comparison_of_the_EODA_algorithm_with_existing_algorithms_in_terms_of_recall_/29200761CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/292007612025-05-30T17:41:50Z
spellingShingle Comparison of the EODA algorithm with existing algorithms in terms of recall.
Sunil Kumar (102321)
Biotechnology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
nearest neighbors algorithm
nearest neighbor search
nearest neighbor identification
identifying unusual patterns
gained significant attention
disrupt system modeling
53 %, outperforming
07 %, recall
rf feature selection
learning repository datasets
named eoda ),
49 %,
parameter selection
deep learning
significantly deviate
shadow features
second stage
results demonstrate
relevant attributes
rapid growth
random forest
parameter estimation
often limited
normal behavior
inaccurate results
highest z
first stage
existing techniques
eoda approach
enhanced knn
data size
data science
clustering phase
boruta method
status_str publishedVersion
title Comparison of the EODA algorithm with existing algorithms in terms of recall.
title_full Comparison of the EODA algorithm with existing algorithms in terms of recall.
title_fullStr Comparison of the EODA algorithm with existing algorithms in terms of recall.
title_full_unstemmed Comparison of the EODA algorithm with existing algorithms in terms of recall.
title_short Comparison of the EODA algorithm with existing algorithms in terms of recall.
title_sort Comparison of the EODA algorithm with existing algorithms in terms of recall.
topic Biotechnology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
nearest neighbors algorithm
nearest neighbor search
nearest neighbor identification
identifying unusual patterns
gained significant attention
disrupt system modeling
53 %, outperforming
07 %, recall
rf feature selection
learning repository datasets
named eoda ),
49 %,
parameter selection
deep learning
significantly deviate
shadow features
second stage
results demonstrate
relevant attributes
rapid growth
random forest
parameter estimation
often limited
normal behavior
inaccurate results
highest z
first stage
existing techniques
eoda approach
enhanced knn
data size
data science
clustering phase
boruta method