A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.

<p>A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.</p>

Saved in:
Bibliographic Details
Main Author: Jiajun Liu (692586) (author)
Other Authors: Bei Zhou (5219792) (author), Jie Liu (15128) (author), Xike Zhang (2848757) (author), Jiangshu Wei (22634246) (author), Yao Zhang (134381) (author), Junjie Wu (393541) (author), Changping Wu (52884) (author), Di Hu (12438) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852014772688519168
author Jiajun Liu (692586)
author2 Bei Zhou (5219792)
Jie Liu (15128)
Xike Zhang (2848757)
Jiangshu Wei (22634246)
Yao Zhang (134381)
Junjie Wu (393541)
Changping Wu (52884)
Di Hu (12438)
author2_role author
author
author
author
author
author
author
author
author_facet Jiajun Liu (692586)
Bei Zhou (5219792)
Jie Liu (15128)
Xike Zhang (2848757)
Jiangshu Wei (22634246)
Yao Zhang (134381)
Junjie Wu (393541)
Changping Wu (52884)
Di Hu (12438)
author_role author
dc.creator.none.fl_str_mv Jiajun Liu (692586)
Bei Zhou (5219792)
Jie Liu (15128)
Xike Zhang (2848757)
Jiangshu Wei (22634246)
Yao Zhang (134381)
Junjie Wu (393541)
Changping Wu (52884)
Di Hu (12438)
dc.date.none.fl_str_mv 2025-11-17T18:42:05Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0336622.t004
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/A_comparison_of_semantic_segmentation_performance_across_five_networks_with_the_top_results_highlighted_in_bold_/30642209
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
throughput plant phenotyping
plant phenotypic traits
made publicly available
based spatial clustering
semantic segmentation tasks
instance segmentation task
div >< p
canola silique segmentation
counting </ p
segmentation accuracy
precision segmentation
canola siliques
counting accuracy
automatic counting
study proposes
precision agriculture
model complexity
method achieves
excellent balance
efficient solution
crop breeding
contrastive learning
baseline models
achieves 94
accurate analysis
72m parameters
6432 /</
dc.title.none.fl_str_mv A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.</p>
eu_rights_str_mv openAccess
id Manara_7443d4e6bfecbccc470f1d050dbbd5cd
identifier_str_mv 10.1371/journal.pone.0336622.t004
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30642209
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.Jiajun Liu (692586)Bei Zhou (5219792)Jie Liu (15128)Xike Zhang (2848757)Jiangshu Wei (22634246)Yao Zhang (134381)Junjie Wu (393541)Changping Wu (52884)Di Hu (12438)Space ScienceBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedthroughput plant phenotypingplant phenotypic traitsmade publicly availablebased spatial clusteringsemantic segmentation tasksinstance segmentation taskdiv >< pcanola silique segmentationcounting </ psegmentation accuracyprecision segmentationcanola siliquescounting accuracyautomatic countingstudy proposesprecision agriculturemodel complexitymethod achievesexcellent balanceefficient solutioncrop breedingcontrastive learningbaseline modelsachieves 94accurate analysis72m parameters6432 /</<p>A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.</p>2025-11-17T18:42:05ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0336622.t004https://figshare.com/articles/dataset/A_comparison_of_semantic_segmentation_performance_across_five_networks_with_the_top_results_highlighted_in_bold_/30642209CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306422092025-11-17T18:42:05Z
spellingShingle A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.
Jiajun Liu (692586)
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
throughput plant phenotyping
plant phenotypic traits
made publicly available
based spatial clustering
semantic segmentation tasks
instance segmentation task
div >< p
canola silique segmentation
counting </ p
segmentation accuracy
precision segmentation
canola siliques
counting accuracy
automatic counting
study proposes
precision agriculture
model complexity
method achieves
excellent balance
efficient solution
crop breeding
contrastive learning
baseline models
achieves 94
accurate analysis
72m parameters
6432 /</
status_str publishedVersion
title A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.
title_full A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.
title_fullStr A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.
title_full_unstemmed A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.
title_short A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.
title_sort A comparison of semantic segmentation performance across five networks, with the top results highlighted in bold.
topic Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
throughput plant phenotyping
plant phenotypic traits
made publicly available
based spatial clustering
semantic segmentation tasks
instance segmentation task
div >< p
canola silique segmentation
counting </ p
segmentation accuracy
precision segmentation
canola siliques
counting accuracy
automatic counting
study proposes
precision agriculture
model complexity
method achieves
excellent balance
efficient solution
crop breeding
contrastive learning
baseline models
achieves 94
accurate analysis
72m parameters
6432 /</