The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model.

<p>The rows denote the actual classes, whilst the columns signify the predicted classes. The diagonal elements represent the count of accurate predictions, and the off-diagonal elements denote misclassifications.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Sajid Ullah (8299908) (author)
مؤلفون آخرون: M. Irfan Uddin (8909933) (author), Muhammad Adnan (678952) (author), Ala Abdulsalam Alarood (21526803) (author), Abdulkream Alsulami (21526806) (author), Safa Habibullah (21526809) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852019388235907072
author Sajid Ullah (8299908)
author2 M. Irfan Uddin (8909933)
Muhammad Adnan (678952)
Ala Abdulsalam Alarood (21526803)
Abdulkream Alsulami (21526806)
Safa Habibullah (21526809)
author2_role author
author
author
author
author
author_facet Sajid Ullah (8299908)
M. Irfan Uddin (8909933)
Muhammad Adnan (678952)
Ala Abdulsalam Alarood (21526803)
Abdulkream Alsulami (21526806)
Safa Habibullah (21526809)
author_role author
dc.creator.none.fl_str_mv Sajid Ullah (8299908)
M. Irfan Uddin (8909933)
Muhammad Adnan (678952)
Ala Abdulsalam Alarood (21526803)
Abdulkream Alsulami (21526806)
Safa Habibullah (21526809)
dc.date.none.fl_str_mv 2025-06-11T18:02:03Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0324847.g024
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/The_image_Illustrated_the_Confusion_Matrix_displays_the_quantities_of_true_positives_TP_true_negatives_TN_false_positives_FP_and_false_negatives_FN_predicted_by_the_pre-trained_Naive_Bayes_model_/29297796
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Genetics
Mental Health
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
transfer learning approach
proposed approach detects
naive bayes ).
methodology involves developing
machine learning methods
deep learning models
admitted technical debt
software comments associated
create software systems
research &# 8217
previous research focuses
detecting bugs alone
categorising bugs based
software quality assessment
performance evaluation criteria
designated satd examples
software engineering
comparative assessment
software defects
xlink ">
work presents
without identifying
transformer model
suggested method
software maintenance
slightly lower
significant implications
resource allocation
mozilla firefox
including apache
direct impact
depth exploration
current methodologies
concurrent identification
comprehensive method
business procedures
bug instances
baseline model
dc.title.none.fl_str_mv The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The rows denote the actual classes, whilst the columns signify the predicted classes. The diagonal elements represent the count of accurate predictions, and the off-diagonal elements denote misclassifications.</p>
eu_rights_str_mv openAccess
id Manara_786ccdb6f72fa642ba2cbf86dc8fbb9a
identifier_str_mv 10.1371/journal.pone.0324847.g024
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29297796
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model.Sajid Ullah (8299908)M. Irfan Uddin (8909933)Muhammad Adnan (678952)Ala Abdulsalam Alarood (21526803)Abdulkream Alsulami (21526806)Safa Habibullah (21526809)GeneticsMental HealthBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedtransfer learning approachproposed approach detectsnaive bayes ).methodology involves developingmachine learning methodsdeep learning modelsadmitted technical debtsoftware comments associatedcreate software systemsresearch &# 8217previous research focusesdetecting bugs alonecategorising bugs basedsoftware quality assessmentperformance evaluation criteriadesignated satd examplessoftware engineeringcomparative assessmentsoftware defectsxlink ">work presentswithout identifyingtransformer modelsuggested methodsoftware maintenanceslightly lowersignificant implicationsresource allocationmozilla firefoxincluding apachedirect impactdepth explorationcurrent methodologiesconcurrent identificationcomprehensive methodbusiness proceduresbug instancesbaseline model<p>The rows denote the actual classes, whilst the columns signify the predicted classes. The diagonal elements represent the count of accurate predictions, and the off-diagonal elements denote misclassifications.</p>2025-06-11T18:02:03ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0324847.g024https://figshare.com/articles/figure/The_image_Illustrated_the_Confusion_Matrix_displays_the_quantities_of_true_positives_TP_true_negatives_TN_false_positives_FP_and_false_negatives_FN_predicted_by_the_pre-trained_Naive_Bayes_model_/29297796CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/292977962025-06-11T18:02:03Z
spellingShingle The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model.
Sajid Ullah (8299908)
Genetics
Mental Health
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
transfer learning approach
proposed approach detects
naive bayes ).
methodology involves developing
machine learning methods
deep learning models
admitted technical debt
software comments associated
create software systems
research &# 8217
previous research focuses
detecting bugs alone
categorising bugs based
software quality assessment
performance evaluation criteria
designated satd examples
software engineering
comparative assessment
software defects
xlink ">
work presents
without identifying
transformer model
suggested method
software maintenance
slightly lower
significant implications
resource allocation
mozilla firefox
including apache
direct impact
depth exploration
current methodologies
concurrent identification
comprehensive method
business procedures
bug instances
baseline model
status_str publishedVersion
title The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model.
title_full The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model.
title_fullStr The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model.
title_full_unstemmed The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model.
title_short The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model.
title_sort The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model.
topic Genetics
Mental Health
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
transfer learning approach
proposed approach detects
naive bayes ).
methodology involves developing
machine learning methods
deep learning models
admitted technical debt
software comments associated
create software systems
research &# 8217
previous research focuses
detecting bugs alone
categorising bugs based
software quality assessment
performance evaluation criteria
designated satd examples
software engineering
comparative assessment
software defects
xlink ">
work presents
without identifying
transformer model
suggested method
software maintenance
slightly lower
significant implications
resource allocation
mozilla firefox
including apache
direct impact
depth exploration
current methodologies
concurrent identification
comprehensive method
business procedures
bug instances
baseline model