The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model.
<p>The rows denote the actual classes, whilst the columns signify the predicted classes. The diagonal elements represent the count of accurate predictions, and the off-diagonal elements denote misclassifications.</p>
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , , , |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| _version_ | 1852019388235907072 |
|---|---|
| author | Sajid Ullah (8299908) |
| author2 | M. Irfan Uddin (8909933) Muhammad Adnan (678952) Ala Abdulsalam Alarood (21526803) Abdulkream Alsulami (21526806) Safa Habibullah (21526809) |
| author2_role | author author author author author |
| author_facet | Sajid Ullah (8299908) M. Irfan Uddin (8909933) Muhammad Adnan (678952) Ala Abdulsalam Alarood (21526803) Abdulkream Alsulami (21526806) Safa Habibullah (21526809) |
| author_role | author |
| dc.creator.none.fl_str_mv | Sajid Ullah (8299908) M. Irfan Uddin (8909933) Muhammad Adnan (678952) Ala Abdulsalam Alarood (21526803) Abdulkream Alsulami (21526806) Safa Habibullah (21526809) |
| dc.date.none.fl_str_mv | 2025-06-11T18:02:03Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pone.0324847.g024 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/figure/The_image_Illustrated_the_Confusion_Matrix_displays_the_quantities_of_true_positives_TP_true_negatives_TN_false_positives_FP_and_false_negatives_FN_predicted_by_the_pre-trained_Naive_Bayes_model_/29297796 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Genetics Mental Health Biological Sciences not elsewhere classified Information Systems not elsewhere classified transfer learning approach proposed approach detects naive bayes ). methodology involves developing machine learning methods deep learning models admitted technical debt software comments associated create software systems research &# 8217 previous research focuses detecting bugs alone categorising bugs based software quality assessment performance evaluation criteria designated satd examples software engineering comparative assessment software defects xlink "> work presents without identifying transformer model suggested method software maintenance slightly lower significant implications resource allocation mozilla firefox including apache direct impact depth exploration current methodologies concurrent identification comprehensive method business procedures bug instances baseline model |
| dc.title.none.fl_str_mv | The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model. |
| dc.type.none.fl_str_mv | Image Figure info:eu-repo/semantics/publishedVersion image |
| description | <p>The rows denote the actual classes, whilst the columns signify the predicted classes. The diagonal elements represent the count of accurate predictions, and the off-diagonal elements denote misclassifications.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_786ccdb6f72fa642ba2cbf86dc8fbb9a |
| identifier_str_mv | 10.1371/journal.pone.0324847.g024 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/29297796 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model.Sajid Ullah (8299908)M. Irfan Uddin (8909933)Muhammad Adnan (678952)Ala Abdulsalam Alarood (21526803)Abdulkream Alsulami (21526806)Safa Habibullah (21526809)GeneticsMental HealthBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedtransfer learning approachproposed approach detectsnaive bayes ).methodology involves developingmachine learning methodsdeep learning modelsadmitted technical debtsoftware comments associatedcreate software systemsresearch &# 8217previous research focusesdetecting bugs alonecategorising bugs basedsoftware quality assessmentperformance evaluation criteriadesignated satd examplessoftware engineeringcomparative assessmentsoftware defectsxlink ">work presentswithout identifyingtransformer modelsuggested methodsoftware maintenanceslightly lowersignificant implicationsresource allocationmozilla firefoxincluding apachedirect impactdepth explorationcurrent methodologiesconcurrent identificationcomprehensive methodbusiness proceduresbug instancesbaseline model<p>The rows denote the actual classes, whilst the columns signify the predicted classes. The diagonal elements represent the count of accurate predictions, and the off-diagonal elements denote misclassifications.</p>2025-06-11T18:02:03ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0324847.g024https://figshare.com/articles/figure/The_image_Illustrated_the_Confusion_Matrix_displays_the_quantities_of_true_positives_TP_true_negatives_TN_false_positives_FP_and_false_negatives_FN_predicted_by_the_pre-trained_Naive_Bayes_model_/29297796CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/292977962025-06-11T18:02:03Z |
| spellingShingle | The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model. Sajid Ullah (8299908) Genetics Mental Health Biological Sciences not elsewhere classified Information Systems not elsewhere classified transfer learning approach proposed approach detects naive bayes ). methodology involves developing machine learning methods deep learning models admitted technical debt software comments associated create software systems research &# 8217 previous research focuses detecting bugs alone categorising bugs based software quality assessment performance evaluation criteria designated satd examples software engineering comparative assessment software defects xlink "> work presents without identifying transformer model suggested method software maintenance slightly lower significant implications resource allocation mozilla firefox including apache direct impact depth exploration current methodologies concurrent identification comprehensive method business procedures bug instances baseline model |
| status_str | publishedVersion |
| title | The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model. |
| title_full | The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model. |
| title_fullStr | The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model. |
| title_full_unstemmed | The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model. |
| title_short | The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model. |
| title_sort | The image Illustrated the Confusion Matrix displays the quantities of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) predicted by the pre-trained Naive Bayes model. |
| topic | Genetics Mental Health Biological Sciences not elsewhere classified Information Systems not elsewhere classified transfer learning approach proposed approach detects naive bayes ). methodology involves developing machine learning methods deep learning models admitted technical debt software comments associated create software systems research &# 8217 previous research focuses detecting bugs alone categorising bugs based software quality assessment performance evaluation criteria designated satd examples software engineering comparative assessment software defects xlink "> work presents without identifying transformer model suggested method software maintenance slightly lower significant implications resource allocation mozilla firefox including apache direct impact depth exploration current methodologies concurrent identification comprehensive method business procedures bug instances baseline model |