LRDCs at <i>l</i> = 2 in real networks in Table 2.

<p>Solid squares represent the <i>r</i><sub>2</sub>-values for real-world networks. Open circles denote calculated as the average <i>r</i><sub>2</sub> values over 100 realizations of the corresponding 1-NNCRNs, with error bars indicating the stan...

Full description

Saved in:
Bibliographic Details
Main Author: Yuka Fujiki (12269596) (author)
Other Authors: Stefan Junk (22793967) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852014156413140992
author Yuka Fujiki (12269596)
author2 Stefan Junk (22793967)
author2_role author
author_facet Yuka Fujiki (12269596)
Stefan Junk (22793967)
author_role author
dc.creator.none.fl_str_mv Yuka Fujiki (12269596)
Stefan Junk (22793967)
dc.date.none.fl_str_mv 2025-12-05T18:43:38Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0336970.g012
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/LRDCs_at_i_l_i_2_in_real_networks_in_Table_2_/30807216
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Neuroscience
Biotechnology
Evolutionary Biology
Developmental Biology
Mental Health
Infectious Diseases
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Physical Sciences not elsewhere classified
shortest path length
highly assortative power
based targeted attacks
>< sub ><
using two steps
power law distributions
>- th nearest
heterogeneous degree distributions
div >< p
>< sub xmlns
></ sub
two nodes
>- nncrns
typical cases
simulated cases
results show
random node
r </
pearson ’
numerically investigate
maximally random
law networks
l </
hastings algorithm
farther scales
differs depending
degree distribution
degree correlations
degree correlation
degree correlated
correlation coefficient
adopted poisson
dc.title.none.fl_str_mv LRDCs at <i>l</i> = 2 in real networks in Table 2.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Solid squares represent the <i>r</i><sub>2</sub>-values for real-world networks. Open circles denote calculated as the average <i>r</i><sub>2</sub> values over 100 realizations of the corresponding 1-NNCRNs, with error bars indicating the standard deviation.</p>
eu_rights_str_mv openAccess
id Manara_7a3e0a89bc7dc5c8f67c19a1401178ee
identifier_str_mv 10.1371/journal.pone.0336970.g012
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30807216
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling LRDCs at <i>l</i> = 2 in real networks in Table 2.Yuka Fujiki (12269596)Stefan Junk (22793967)Cell BiologyNeuroscienceBiotechnologyEvolutionary BiologyDevelopmental BiologyMental HealthInfectious DiseasesComputational BiologyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedPhysical Sciences not elsewhere classifiedshortest path lengthhighly assortative powerbased targeted attacks>< sub ><using two stepspower law distributions>- th nearestheterogeneous degree distributionsdiv >< p>< sub xmlns></ subtwo nodes>- nncrnstypical casessimulated casesresults showrandom noder </pearson ’numerically investigatemaximally randomlaw networksl </hastings algorithmfarther scalesdiffers dependingdegree distributiondegree correlationsdegree correlationdegree correlatedcorrelation coefficientadopted poisson<p>Solid squares represent the <i>r</i><sub>2</sub>-values for real-world networks. Open circles denote calculated as the average <i>r</i><sub>2</sub> values over 100 realizations of the corresponding 1-NNCRNs, with error bars indicating the standard deviation.</p>2025-12-05T18:43:38ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0336970.g012https://figshare.com/articles/figure/LRDCs_at_i_l_i_2_in_real_networks_in_Table_2_/30807216CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/308072162025-12-05T18:43:38Z
spellingShingle LRDCs at <i>l</i> = 2 in real networks in Table 2.
Yuka Fujiki (12269596)
Cell Biology
Neuroscience
Biotechnology
Evolutionary Biology
Developmental Biology
Mental Health
Infectious Diseases
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Physical Sciences not elsewhere classified
shortest path length
highly assortative power
based targeted attacks
>< sub ><
using two steps
power law distributions
>- th nearest
heterogeneous degree distributions
div >< p
>< sub xmlns
></ sub
two nodes
>- nncrns
typical cases
simulated cases
results show
random node
r </
pearson ’
numerically investigate
maximally random
law networks
l </
hastings algorithm
farther scales
differs depending
degree distribution
degree correlations
degree correlation
degree correlated
correlation coefficient
adopted poisson
status_str publishedVersion
title LRDCs at <i>l</i> = 2 in real networks in Table 2.
title_full LRDCs at <i>l</i> = 2 in real networks in Table 2.
title_fullStr LRDCs at <i>l</i> = 2 in real networks in Table 2.
title_full_unstemmed LRDCs at <i>l</i> = 2 in real networks in Table 2.
title_short LRDCs at <i>l</i> = 2 in real networks in Table 2.
title_sort LRDCs at <i>l</i> = 2 in real networks in Table 2.
topic Cell Biology
Neuroscience
Biotechnology
Evolutionary Biology
Developmental Biology
Mental Health
Infectious Diseases
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Physical Sciences not elsewhere classified
shortest path length
highly assortative power
based targeted attacks
>< sub ><
using two steps
power law distributions
>- th nearest
heterogeneous degree distributions
div >< p
>< sub xmlns
></ sub
two nodes
>- nncrns
typical cases
simulated cases
results show
random node
r </
pearson ’
numerically investigate
maximally random
law networks
l </
hastings algorithm
farther scales
differs depending
degree distribution
degree correlations
degree correlation
degree correlated
correlation coefficient
adopted poisson