Activity test of NagS homologs in vitro and in vivo.

<p><b>(a)</b> Comparison of amino acid sequences of <i>S. coelicolor</i> NagS and its homologs. These are homologs from <i>Streptacidiphilus jiangxiensis</i> (TrEMBL A0A1H7F721), <i>Clostridium amylolyticum</i> (TrEMBL A0A1M6IM34), <i>Paeni...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile nagusia: Chao Li (145513) (author)
Beste egile batzuk: Mia Urem (22683580) (author), Ioli Kotsogianni (9930187) (author), Josephine Lau (20442343) (author), Chao Du (288036) (author), Somayah S. Elsayed (9192571) (author), Nathaniel I. Martin (847378) (author), Iain W. McNae (840777) (author), Patrick Voskamp (2311429) (author), Christoph Mayer (57204) (author), Sébastien Rigali (724082) (author), Navraj Pannu (10163763) (author), Jan Pieter Abrahams (1429531) (author), Lennart Schada von Borzyskowski (22683583) (author), Gilles P. van Wezel (7838948) (author)
Argitaratua: 2025
Gaiak:
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
_version_ 1849927625862021120
author Chao Li (145513)
author2 Mia Urem (22683580)
Ioli Kotsogianni (9930187)
Josephine Lau (20442343)
Chao Du (288036)
Somayah S. Elsayed (9192571)
Nathaniel I. Martin (847378)
Iain W. McNae (840777)
Patrick Voskamp (2311429)
Christoph Mayer (57204)
Sébastien Rigali (724082)
Navraj Pannu (10163763)
Jan Pieter Abrahams (1429531)
Lennart Schada von Borzyskowski (22683583)
Gilles P. van Wezel (7838948)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author_facet Chao Li (145513)
Mia Urem (22683580)
Ioli Kotsogianni (9930187)
Josephine Lau (20442343)
Chao Du (288036)
Somayah S. Elsayed (9192571)
Nathaniel I. Martin (847378)
Iain W. McNae (840777)
Patrick Voskamp (2311429)
Christoph Mayer (57204)
Sébastien Rigali (724082)
Navraj Pannu (10163763)
Jan Pieter Abrahams (1429531)
Lennart Schada von Borzyskowski (22683583)
Gilles P. van Wezel (7838948)
author_role author
dc.creator.none.fl_str_mv Chao Li (145513)
Mia Urem (22683580)
Ioli Kotsogianni (9930187)
Josephine Lau (20442343)
Chao Du (288036)
Somayah S. Elsayed (9192571)
Nathaniel I. Martin (847378)
Iain W. McNae (840777)
Patrick Voskamp (2311429)
Christoph Mayer (57204)
Sébastien Rigali (724082)
Navraj Pannu (10163763)
Jan Pieter Abrahams (1429531)
Lennart Schada von Borzyskowski (22683583)
Gilles P. van Wezel (7838948)
dc.date.none.fl_str_mv 2025-11-25T19:00:14Z
dc.identifier.none.fl_str_mv 10.1371/journal.pbio.3003514.s009
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Activity_test_of_NagS_homologs_in_vitro_and_in_vivo_/30715156
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Microbiology
Ecology
Developmental Biology
Inorganic Chemistry
Biological Sciences not elsewhere classified
controls nutrient signaling
also revealed 6
highlighted key residues
glcnac sensing requires
toxicity pathway dependent
6p deacetylase naga
novel glcnac 6
key role
substrate glcnac
novel enzyme
work uncovers
wall leads
unprecedented reaction
substrate mycelium
structural analogue
streptomycetaceae </
streptomyces </
revolves around
promiscuous activity
nature ’
n </
multicellular lifestyle
metabolic checkpoint
medicine makers
lytic dismantling
landmark event
hyphal cell
highly conserved
growth media
function analysis
clinical antibiotics
central metabolism
catalytic inhibitor
antibiotic production
active site
>- acetylglucosamine
6p dehydratase
dc.title.none.fl_str_mv Activity test of NagS homologs in vitro and in vivo.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p><b>(a)</b> Comparison of amino acid sequences of <i>S. coelicolor</i> NagS and its homologs. These are homologs from <i>Streptacidiphilus jiangxiensis</i> (TrEMBL A0A1H7F721), <i>Clostridium amylolyticum</i> (TrEMBL A0A1M6IM34), <i>Paenibacillus selenitireducens</i> (TrEMBL A0A1T2XKX6), and <i>Acidothermus cellulolyticus</i> (TrEMBL A0LSD9). The amino acid identities with <i>S. coelicolor</i> NagS are 65.5%, 33.2%, 25.7%, and 35.7%, respectively. Absorbance changes detected at 230 nm when incubating 2 mM GlcNAc-6P with proteins from <i>S. jiangxiensis</i> <b>(b)</b>, <i>C. amylolyticum</i> <b>(c)</b>, <i>P. selenitireducens</i> <b>(d),</b> and <i>A. cellulolyticus</i> <b>(e)</b> at 30 °C. Increased absorbance means that GlcNAc-6P was dehydrated by the incubated NagS homologs. This shows that only the protein from <i>S. jiangxiensis</i> is a true NagS homolog. <b>(f)</b> In vivo activity test of NagS homologs. GlcNAc sensitivity of ∆<i>nagB</i>∆<i>nagS</i> harboring clones expressing the homologs from <i>S. jiangxiensis</i> (A0A1H7F721), <i>C. amylolyticum</i> (A0A1M6IM34), <i>P. selenitireducens</i> (A0A1T2XKX6), and <i>A. cellulolyticus</i> (A0LSD9) were grown on MM agar supplemented with 1% mannitol (Mann) and 1% mannitol plus 10 mM GlcNAc (GlcNAc). As expected based on the enzymatic activities, only the complementation of A0A1H7F721 restored GlcNAc sensitivity. This supports the phylogenetic analysis that true NagS orthologs are only found in <i>Streptomycetaceae</i>. The data underlying this Figure can be found in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.s022" target="_blank">S1 Data</a>.</p> <p>(TIF)</p>
eu_rights_str_mv openAccess
id Manara_7bb58f19191f9cf0d0d8132db2dc758f
identifier_str_mv 10.1371/journal.pbio.3003514.s009
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30715156
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Activity test of NagS homologs in vitro and in vivo.Chao Li (145513)Mia Urem (22683580)Ioli Kotsogianni (9930187)Josephine Lau (20442343)Chao Du (288036)Somayah S. Elsayed (9192571)Nathaniel I. Martin (847378)Iain W. McNae (840777)Patrick Voskamp (2311429)Christoph Mayer (57204)Sébastien Rigali (724082)Navraj Pannu (10163763)Jan Pieter Abrahams (1429531)Lennart Schada von Borzyskowski (22683583)Gilles P. van Wezel (7838948)BiochemistryMicrobiologyEcologyDevelopmental BiologyInorganic ChemistryBiological Sciences not elsewhere classifiedcontrols nutrient signalingalso revealed 6highlighted key residuesglcnac sensing requirestoxicity pathway dependent6p deacetylase naganovel glcnac 6key rolesubstrate glcnacnovel enzymework uncoverswall leadsunprecedented reactionsubstrate myceliumstructural analoguestreptomycetaceae </streptomyces </revolves aroundpromiscuous activitynature ’n </multicellular lifestylemetabolic checkpointmedicine makerslytic dismantlinglandmark eventhyphal cellhighly conservedgrowth mediafunction analysisclinical antibioticscentral metabolismcatalytic inhibitorantibiotic productionactive site>- acetylglucosamine6p dehydratase<p><b>(a)</b> Comparison of amino acid sequences of <i>S. coelicolor</i> NagS and its homologs. These are homologs from <i>Streptacidiphilus jiangxiensis</i> (TrEMBL A0A1H7F721), <i>Clostridium amylolyticum</i> (TrEMBL A0A1M6IM34), <i>Paenibacillus selenitireducens</i> (TrEMBL A0A1T2XKX6), and <i>Acidothermus cellulolyticus</i> (TrEMBL A0LSD9). The amino acid identities with <i>S. coelicolor</i> NagS are 65.5%, 33.2%, 25.7%, and 35.7%, respectively. Absorbance changes detected at 230 nm when incubating 2 mM GlcNAc-6P with proteins from <i>S. jiangxiensis</i> <b>(b)</b>, <i>C. amylolyticum</i> <b>(c)</b>, <i>P. selenitireducens</i> <b>(d),</b> and <i>A. cellulolyticus</i> <b>(e)</b> at 30 °C. Increased absorbance means that GlcNAc-6P was dehydrated by the incubated NagS homologs. This shows that only the protein from <i>S. jiangxiensis</i> is a true NagS homolog. <b>(f)</b> In vivo activity test of NagS homologs. GlcNAc sensitivity of ∆<i>nagB</i>∆<i>nagS</i> harboring clones expressing the homologs from <i>S. jiangxiensis</i> (A0A1H7F721), <i>C. amylolyticum</i> (A0A1M6IM34), <i>P. selenitireducens</i> (A0A1T2XKX6), and <i>A. cellulolyticus</i> (A0LSD9) were grown on MM agar supplemented with 1% mannitol (Mann) and 1% mannitol plus 10 mM GlcNAc (GlcNAc). As expected based on the enzymatic activities, only the complementation of A0A1H7F721 restored GlcNAc sensitivity. This supports the phylogenetic analysis that true NagS orthologs are only found in <i>Streptomycetaceae</i>. The data underlying this Figure can be found in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.s022" target="_blank">S1 Data</a>.</p> <p>(TIF)</p>2025-11-25T19:00:14ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pbio.3003514.s009https://figshare.com/articles/figure/Activity_test_of_NagS_homologs_in_vitro_and_in_vivo_/30715156CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307151562025-11-25T19:00:14Z
spellingShingle Activity test of NagS homologs in vitro and in vivo.
Chao Li (145513)
Biochemistry
Microbiology
Ecology
Developmental Biology
Inorganic Chemistry
Biological Sciences not elsewhere classified
controls nutrient signaling
also revealed 6
highlighted key residues
glcnac sensing requires
toxicity pathway dependent
6p deacetylase naga
novel glcnac 6
key role
substrate glcnac
novel enzyme
work uncovers
wall leads
unprecedented reaction
substrate mycelium
structural analogue
streptomycetaceae </
streptomyces </
revolves around
promiscuous activity
nature ’
n </
multicellular lifestyle
metabolic checkpoint
medicine makers
lytic dismantling
landmark event
hyphal cell
highly conserved
growth media
function analysis
clinical antibiotics
central metabolism
catalytic inhibitor
antibiotic production
active site
>- acetylglucosamine
6p dehydratase
status_str publishedVersion
title Activity test of NagS homologs in vitro and in vivo.
title_full Activity test of NagS homologs in vitro and in vivo.
title_fullStr Activity test of NagS homologs in vitro and in vivo.
title_full_unstemmed Activity test of NagS homologs in vitro and in vivo.
title_short Activity test of NagS homologs in vitro and in vivo.
title_sort Activity test of NagS homologs in vitro and in vivo.
topic Biochemistry
Microbiology
Ecology
Developmental Biology
Inorganic Chemistry
Biological Sciences not elsewhere classified
controls nutrient signaling
also revealed 6
highlighted key residues
glcnac sensing requires
toxicity pathway dependent
6p deacetylase naga
novel glcnac 6
key role
substrate glcnac
novel enzyme
work uncovers
wall leads
unprecedented reaction
substrate mycelium
structural analogue
streptomycetaceae </
streptomyces </
revolves around
promiscuous activity
nature ’
n </
multicellular lifestyle
metabolic checkpoint
medicine makers
lytic dismantling
landmark event
hyphal cell
highly conserved
growth media
function analysis
clinical antibiotics
central metabolism
catalytic inhibitor
antibiotic production
active site
>- acetylglucosamine
6p dehydratase