The process of standard convolution and depthwise separable convolution.

<p>The process of standard convolution and depthwise separable convolution.</p>

Gorde:
Xehetasun bibliografikoak
Egile nagusia: Mehmet Zahid Genc (22683526) (author)
Beste egile batzuk: Yaser Dalveren (22683529) (author), Ali Kara (690960) (author), Mohammad Derawi (22683532) (author), Jan Kubicek (170285) (author), Marek Penhaker (13014797) (author)
Argitaratua: 2025
Gaiak:
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
_version_ 1849927627472633856
author Mehmet Zahid Genc (22683526)
author2 Yaser Dalveren (22683529)
Ali Kara (690960)
Mohammad Derawi (22683532)
Jan Kubicek (170285)
Marek Penhaker (13014797)
author2_role author
author
author
author
author
author_facet Mehmet Zahid Genc (22683526)
Yaser Dalveren (22683529)
Ali Kara (690960)
Mohammad Derawi (22683532)
Jan Kubicek (170285)
Marek Penhaker (13014797)
author_role author
dc.creator.none.fl_str_mv Mehmet Zahid Genc (22683526)
Yaser Dalveren (22683529)
Ali Kara (690960)
Mohammad Derawi (22683532)
Jan Kubicek (170285)
Marek Penhaker (13014797)
dc.date.none.fl_str_mv 2025-11-25T18:35:18Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0332482.g002
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/The_process_of_standard_convolution_and_depthwise_separable_convolution_/30714412
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Medicine
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
training compression techniques
targeted architectural optimizations
reliable imaging modalities
promising results achieved
neighborhood convolutional network
model &# 8217
limited processing capabilities
depthwise separable convolution
high segmentation accuracy
3d organ segmentation
routine clinical workflows
memory demands make
net builds upon
entirely new architecture
comparative analysis verified
comparative analysis
manual segmentation
memory usage
clinical deployment
viable alternative
time applications
recent years
purpose due
ongoing efforts
net variant
net framework
less suitable
inference speed
including upernet
highly suitable
first time
findings contribute
explore post
edge devices
constrained environments
computed tomography
2d convolutions
dc.title.none.fl_str_mv The process of standard convolution and depthwise separable convolution.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The process of standard convolution and depthwise separable convolution.</p>
eu_rights_str_mv openAccess
id Manara_7ed11a2a167d16caae6a8f045cec496a
identifier_str_mv 10.1371/journal.pone.0332482.g002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30714412
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The process of standard convolution and depthwise separable convolution.Mehmet Zahid Genc (22683526)Yaser Dalveren (22683529)Ali Kara (690960)Mohammad Derawi (22683532)Jan Kubicek (170285)Marek Penhaker (13014797)MedicineSpace ScienceEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedtraining compression techniquestargeted architectural optimizationsreliable imaging modalitiespromising results achievedneighborhood convolutional networkmodel &# 8217limited processing capabilitiesdepthwise separable convolutionhigh segmentation accuracy3d organ segmentationroutine clinical workflowsmemory demands makenet builds uponentirely new architecturecomparative analysis verifiedcomparative analysismanual segmentationmemory usageclinical deploymentviable alternativetime applicationsrecent yearspurpose dueongoing effortsnet variantnet frameworkless suitableinference speedincluding upernethighly suitablefirst timefindings contributeexplore postedge devicesconstrained environmentscomputed tomography2d convolutions<p>The process of standard convolution and depthwise separable convolution.</p>2025-11-25T18:35:18ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0332482.g002https://figshare.com/articles/figure/The_process_of_standard_convolution_and_depthwise_separable_convolution_/30714412CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307144122025-11-25T18:35:18Z
spellingShingle The process of standard convolution and depthwise separable convolution.
Mehmet Zahid Genc (22683526)
Medicine
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
training compression techniques
targeted architectural optimizations
reliable imaging modalities
promising results achieved
neighborhood convolutional network
model &# 8217
limited processing capabilities
depthwise separable convolution
high segmentation accuracy
3d organ segmentation
routine clinical workflows
memory demands make
net builds upon
entirely new architecture
comparative analysis verified
comparative analysis
manual segmentation
memory usage
clinical deployment
viable alternative
time applications
recent years
purpose due
ongoing efforts
net variant
net framework
less suitable
inference speed
including upernet
highly suitable
first time
findings contribute
explore post
edge devices
constrained environments
computed tomography
2d convolutions
status_str publishedVersion
title The process of standard convolution and depthwise separable convolution.
title_full The process of standard convolution and depthwise separable convolution.
title_fullStr The process of standard convolution and depthwise separable convolution.
title_full_unstemmed The process of standard convolution and depthwise separable convolution.
title_short The process of standard convolution and depthwise separable convolution.
title_sort The process of standard convolution and depthwise separable convolution.
topic Medicine
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
training compression techniques
targeted architectural optimizations
reliable imaging modalities
promising results achieved
neighborhood convolutional network
model &# 8217
limited processing capabilities
depthwise separable convolution
high segmentation accuracy
3d organ segmentation
routine clinical workflows
memory demands make
net builds upon
entirely new architecture
comparative analysis verified
comparative analysis
manual segmentation
memory usage
clinical deployment
viable alternative
time applications
recent years
purpose due
ongoing efforts
net variant
net framework
less suitable
inference speed
including upernet
highly suitable
first time
findings contribute
explore post
edge devices
constrained environments
computed tomography
2d convolutions