Skip to content
VuFind
  • 登錄
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
高級檢索
  • The ARI and NMI of SpaMWGDA an...
  • 引用
  • 發送短信
  • 推薦此
  • 打印
  • 導出紀錄
    • 導出到 RefWorks
    • 導出到 EndNoteWeb
    • 導出到 EndNote
  • 加到收藏夾
  • Permanent link
The ARI and NMI of SpaMWGDA and seven competing methods on Gaussian Noise 10% DLPFC dataset.

The ARI and NMI of SpaMWGDA and seven competing methods on Gaussian Noise 10% DLPFC dataset.

<p>The ARI and NMI of SpaMWGDA and seven competing methods on Gaussian Noise 10% DLPFC dataset.</p>

Saved in:
書目詳細資料
主要作者: Lin Yuan (46306) (author)
其他作者: Boyuan Meng (22607954) (author), Qingxiang Wang (2637916) (author), Chunyu Hu (12464817) (author), Cuihong Wang (429362) (author), De-Shuang Huang (396909) (author)
出版: 2025
主題:
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
level attention mechanism
fixed similarity metric
analyse tissue structure
spatial domain identification
identifying spatial domains
achieved impressive results
div >< p
combining data augmentation
view gcn encoder
data augmentation
spatial transcriptomics
spatial information
experimental results
weighted fusion
trajectory inference
spot features
source code
rapid development
large number
key features
introduce noise
gene features
deep learning
contrastive learning
cannot efficiently
also show
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
  • 持有資料
  • 實物特徵
  • 您的評論
  • 相似書籍
  • 職員瀏覽

相似書籍

  • The ARI and NMI of four variant models and SpaMWGDA.
    由: Lin Yuan (46306)
    出版: (2025)
  • Schematic overview of SpaMWGDA.
    由: Lin Yuan (46306)
    出版: (2025)
  • (A) The performance comparison of spatial domain identification of SpaMWGDA and seven state-of-the-art methods (Scanpy, stlearn, SpaGCN, SEDR, STAGATE, GraphST, and Spatial-MGCN) on DLPFC dataset.
    由: Lin Yuan (46306)
    出版: (2025)
  • Running time of SpaMWGDA under different data scales and spot counts.
    由: Lin Yuan (46306)
    出版: (2025)
  • (A) Comparison of the results of identifying the laminar structure of the olfactory bulb using SpaMWGDA and seven state-of-the-art methods (Scanpy, stlearn, SpaGCN, SEDR, STAGATE, GraphST, and Spatial-MGCN).
    由: Lin Yuan (46306)
    出版: (2025)

檢索選項

  • 檢索歷史
  • 高級檢索

查找更多

  • 瀏覽目錄
  • 按字母順序瀏覽
  • Explore Channels
  • 課程儲備
  • 新項目

需要幫助?

  • 檢索技巧
  • 咨詢台
  • 常見問題