Polyvinyl Butyral Solid Electrolyte Film and Its Electrochromic Laminated Safety Glass
In recent years, the application of electrochromic laminated safety glass has attracted more and more attention, relying on polyvinyl butyral (PVB) solid electrolyte film. Herein, the ionic conductivity (σ) of the PVB film has been improved by a cross-linked structure and blended with LiClO<sub&g...
Saved in:
| Main Author: | |
|---|---|
| Other Authors: | , , , , |
| Published: |
2024
|
| Subjects: | |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In recent years, the application of electrochromic laminated safety glass has attracted more and more attention, relying on polyvinyl butyral (PVB) solid electrolyte film. Herein, the ionic conductivity (σ) of the PVB film has been improved by a cross-linked structure and blended with LiClO<sub>4</sub>, which can reach as high as 1.78 × 10<sup>–4</sup> S cm<sup>–1</sup> at room temperature. In addition, their excellent comprehensive characteristics have been confirmed, such as mechanical strength, high visible light transmittance (>90%), high bond strength (4.2 MPa), and excellent thermal stability. Based on the PVB film above, WO<sub>3</sub>-laminated electrochromic devices with 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> areas are constructed. They can remain stable after 20 000 cycles monitored by cyclic voltammetry curves, indicating the PVB solid polymer electrolyte (PSPE) with a cross-linked structure has the potential commercial viability of large-area electrochromic devices (ECDs). |
|---|