The Cykloid-Adelic Recursive Expansive Field Equation (CARE)

<p dir="ltr">The full expression lives alongside the original paper RED34Section </p><p dir="ltr">1: Mathematical Framework Definitions Core Functions – r₁(t)=exp(t·α), r₂(t)=tᵅ, d(t)=2 sin(t·α)+3 Time Derivatives – ṙ₁=α exp(t α), ṙ₂=tᵅ·(α/t), ḋ=2 α cos(t α) <...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Hoofdauteur: Del Bel, Julian (21403013) (author)
Gepubliceerd in: 2025
Onderwerpen:
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
_version_ 1849927625912352768
author Del Bel, Julian (21403013)
author_facet Del Bel, Julian (21403013)
author_role author
dc.creator.none.fl_str_mv Del Bel, Julian (21403013)
dc.date.none.fl_str_mv 2025-11-25T18:50:30Z
dc.identifier.none.fl_str_mv 10.5281/zenodo.15750370
dc.relation.none.fl_str_mv https://figshare.com/articles/online resource/The_Cykloid-Adelic_Recursive_Expansive_Field_Equation_CARE_/30559742
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Mathematical physics not elsewhere classified
Numerical and computational mathematics not elsewhere classified
recursive expansive dynamics
Sobolev norm regularization
Adelic
adelic cosmology
dc.title.none.fl_str_mv The Cykloid-Adelic Recursive Expansive Field Equation (CARE)
dc.type.none.fl_str_mv Text
Online resource
info:eu-repo/semantics/publishedVersion
text
description <p dir="ltr">The full expression lives alongside the original paper RED34Section </p><p dir="ltr">1: Mathematical Framework Definitions Core Functions – r₁(t)=exp(t·α), r₂(t)=tᵅ, d(t)=2 sin(t·α)+3 Time Derivatives – ṙ₁=α exp(t α), ṙ₂=tᵅ·(α/t), ḋ=2 α cos(t α) </p><p dir="ltr">Section 2: Partial Derivatives of the Area Function Auxiliary terms θ₁…θ₄ defined from r₁, r₂, d and Δ=√(θ₁θ₂θ₃θ₄) Exact formulas for ∂A/∂r₁, ∂A/∂r₂, ∂A/∂d, each featuring: – a Heron-type square‐root term – a cyclic product of three θ’s divided by 2 θ₁θ₂θ₃θ₄ – an arccos term – additional correction factors </p><p dir="ltr">Section 3: Total Time Derivative of Area dA/dt = (∂A/∂r₁)ṙ₁ + (∂A/∂r₂)ṙ₂ + (∂A/∂d)ḋ Substitution of ṙ₁, ṙ₂, ḋ yields a sprawling multi-line expression combining all three partial contributions </p><p dir="ltr">Section 4: Key Mathematical Constructs Golden ratio φ = (1+√5)/2 ≈ 1.618 Fractal Hausdorff dimension D_H ≈ 3.48 Tribonacci constant ≈ 1.839 Adelic prime-based product structures Recursive operator ℛ(x)=limₙ→∞φ⁻ⁿ P_stratumₙ∘Tⁿx Eigenvergence at rate O(φ⁻ⁿ) </p><p dir="ltr">Section 5: Validation Metrics χ²/ν = 1.03 (ν=112) Gelman–Rubin R̂ = 1.002 ± 0.0003 Energy conservation: d(E_epic+E_epitro)/dt = 0 CMB multipoles C_ℓ ∼ ℓ^{–α} cos(2π ℓ φ) Gravitational-wave echo frequencies fₙ = f₀ φ⁻ⁿ </p><p dir="ltr">We develop a unified field framework, the Cykloid-Adelic Recursive Expansive Field Equation (CARE), which scaffolds stratified geometric manifolds with adelic number-theoretic dynamics via recursive cycloidal parameter spaces. This approach rigorously defines a hierarchy of embedded strata, governed by golden-ratio scaling, and constructs a convergence-proof action principle on a fractal manifold. CARE introduces novel mechanisms for field trifurcation into matter, interaction, and geometric sectors; formulates curvature-based nexus point theory with discrete quantization; and derives a p-adically regulated cosmological constant. The framework delivers testable predictions in gravitational wave echoes, CMB multipole anomalies, and dark matter fractal distributions, while grounding the theory in weighted Sobolev spaces and distributional analysis on singular stratified spaces.</p>
eu_rights_str_mv openAccess
id Manara_83f8aad0e2b07965d6def8c7788b8920
identifier_str_mv 10.5281/zenodo.15750370
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30559742
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The Cykloid-Adelic Recursive Expansive Field Equation (CARE)Del Bel, Julian (21403013)Mathematical physics not elsewhere classifiedNumerical and computational mathematics not elsewhere classifiedrecursive expansive dynamicsSobolev norm regularizationAdelicadelic cosmology<p dir="ltr">The full expression lives alongside the original paper RED34Section </p><p dir="ltr">1: Mathematical Framework Definitions Core Functions – r₁(t)=exp(t·α), r₂(t)=tᵅ, d(t)=2 sin(t·α)+3 Time Derivatives – ṙ₁=α exp(t α), ṙ₂=tᵅ·(α/t), ḋ=2 α cos(t α) </p><p dir="ltr">Section 2: Partial Derivatives of the Area Function Auxiliary terms θ₁…θ₄ defined from r₁, r₂, d and Δ=√(θ₁θ₂θ₃θ₄) Exact formulas for ∂A/∂r₁, ∂A/∂r₂, ∂A/∂d, each featuring: – a Heron-type square‐root term – a cyclic product of three θ’s divided by 2 θ₁θ₂θ₃θ₄ – an arccos term – additional correction factors </p><p dir="ltr">Section 3: Total Time Derivative of Area dA/dt = (∂A/∂r₁)ṙ₁ + (∂A/∂r₂)ṙ₂ + (∂A/∂d)ḋ Substitution of ṙ₁, ṙ₂, ḋ yields a sprawling multi-line expression combining all three partial contributions </p><p dir="ltr">Section 4: Key Mathematical Constructs Golden ratio φ = (1+√5)/2 ≈ 1.618 Fractal Hausdorff dimension D_H ≈ 3.48 Tribonacci constant ≈ 1.839 Adelic prime-based product structures Recursive operator ℛ(x)=limₙ→∞φ⁻ⁿ P_stratumₙ∘Tⁿx Eigenvergence at rate O(φ⁻ⁿ) </p><p dir="ltr">Section 5: Validation Metrics χ²/ν = 1.03 (ν=112) Gelman–Rubin R̂ = 1.002 ± 0.0003 Energy conservation: d(E_epic+E_epitro)/dt = 0 CMB multipoles C_ℓ ∼ ℓ^{–α} cos(2π ℓ φ) Gravitational-wave echo frequencies fₙ = f₀ φ⁻ⁿ </p><p dir="ltr">We develop a unified field framework, the Cykloid-Adelic Recursive Expansive Field Equation (CARE), which scaffolds stratified geometric manifolds with adelic number-theoretic dynamics via recursive cycloidal parameter spaces. This approach rigorously defines a hierarchy of embedded strata, governed by golden-ratio scaling, and constructs a convergence-proof action principle on a fractal manifold. CARE introduces novel mechanisms for field trifurcation into matter, interaction, and geometric sectors; formulates curvature-based nexus point theory with discrete quantization; and derives a p-adically regulated cosmological constant. The framework delivers testable predictions in gravitational wave echoes, CMB multipole anomalies, and dark matter fractal distributions, while grounding the theory in weighted Sobolev spaces and distributional analysis on singular stratified spaces.</p>2025-11-25T18:50:30ZTextOnline resourceinfo:eu-repo/semantics/publishedVersiontext10.5281/zenodo.15750370https://figshare.com/articles/online resource/The_Cykloid-Adelic_Recursive_Expansive_Field_Equation_CARE_/30559742CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/305597422025-11-25T18:50:30Z
spellingShingle The Cykloid-Adelic Recursive Expansive Field Equation (CARE)
Del Bel, Julian (21403013)
Mathematical physics not elsewhere classified
Numerical and computational mathematics not elsewhere classified
recursive expansive dynamics
Sobolev norm regularization
Adelic
adelic cosmology
status_str publishedVersion
title The Cykloid-Adelic Recursive Expansive Field Equation (CARE)
title_full The Cykloid-Adelic Recursive Expansive Field Equation (CARE)
title_fullStr The Cykloid-Adelic Recursive Expansive Field Equation (CARE)
title_full_unstemmed The Cykloid-Adelic Recursive Expansive Field Equation (CARE)
title_short The Cykloid-Adelic Recursive Expansive Field Equation (CARE)
title_sort The Cykloid-Adelic Recursive Expansive Field Equation (CARE)
topic Mathematical physics not elsewhere classified
Numerical and computational mathematics not elsewhere classified
recursive expansive dynamics
Sobolev norm regularization
Adelic
adelic cosmology