Conceptual framework for the implementation of the hybrid model.

<p>Conceptual framework for the implementation of the hybrid model.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Micanaldo Ernesto Francisco (18723706) (author)
مؤلفون آخرون: Thaddeus M. Carvajal (8796821) (author), Kozo Watanabe (544664) (author)
منشور في: 2024
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852025798270124032
author Micanaldo Ernesto Francisco (18723706)
author2 Thaddeus M. Carvajal (8796821)
Kozo Watanabe (544664)
author2_role author
author
author_facet Micanaldo Ernesto Francisco (18723706)
Thaddeus M. Carvajal (8796821)
Kozo Watanabe (544664)
author_role author
dc.creator.none.fl_str_mv Micanaldo Ernesto Francisco (18723706)
Thaddeus M. Carvajal (8796821)
Kozo Watanabe (544664)
dc.date.none.fl_str_mv 2024-10-21T17:43:32Z
dc.identifier.none.fl_str_mv 10.1371/journal.pntd.0012599.g001
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Conceptual_framework_for_the_implementation_of_the_hybrid_model_/27272902
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Molecular Biology
Biotechnology
Ecology
Cancer
Infectious Diseases
Plant Biology
Virology
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
support vector machines
extreme gradient boosting
conditional inference forest
artificial neural networks
impending dengue outbreaks
spatiotemporal resolution differs
fine spatiotemporal scales
predicted dengue incidence
dengue incidence may
dengue incidence due
generalized additive models
dengue incidence prediction
spatiotemporal dengue prediction
quantitative pattern extraction
six spatiotemporal resolutions
six ml algorithms
novel hybrid approach
frequent zero values
stage quantitative prediction
dengue incidence data
inflated models cannot
enhance prediction accuracy
qualitative dengue variables
dengue incidence
spatiotemporal resolutions
hybrid approach
quantitative prediction
qualitative models
prediction accuracy
higher resolutions
environmental variables
binary variables
qualitative predictions
combining qualitative
xlink ">
study aimed
rare phenomena
random forests
predicting zero
model validation
inflated data
data distribution
control strategies
alternative solution
dc.title.none.fl_str_mv Conceptual framework for the implementation of the hybrid model.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Conceptual framework for the implementation of the hybrid model.</p>
eu_rights_str_mv openAccess
id Manara_85228b09be3e2ff307b17b6ccbd41c7b
identifier_str_mv 10.1371/journal.pntd.0012599.g001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/27272902
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Conceptual framework for the implementation of the hybrid model.Micanaldo Ernesto Francisco (18723706)Thaddeus M. Carvajal (8796821)Kozo Watanabe (544664)BiochemistryMolecular BiologyBiotechnologyEcologyCancerInfectious DiseasesPlant BiologyVirologyMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedsupport vector machinesextreme gradient boostingconditional inference forestartificial neural networksimpending dengue outbreaksspatiotemporal resolution differsfine spatiotemporal scalespredicted dengue incidencedengue incidence maydengue incidence duegeneralized additive modelsdengue incidence predictionspatiotemporal dengue predictionquantitative pattern extractionsix spatiotemporal resolutionssix ml algorithmsnovel hybrid approachfrequent zero valuesstage quantitative predictiondengue incidence datainflated models cannotenhance prediction accuracyqualitative dengue variablesdengue incidencespatiotemporal resolutionshybrid approachquantitative predictionqualitative modelsprediction accuracyhigher resolutionsenvironmental variablesbinary variablesqualitative predictionscombining qualitativexlink ">study aimedrare phenomenarandom forestspredicting zeromodel validationinflated datadata distributioncontrol strategiesalternative solution<p>Conceptual framework for the implementation of the hybrid model.</p>2024-10-21T17:43:32ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pntd.0012599.g001https://figshare.com/articles/figure/Conceptual_framework_for_the_implementation_of_the_hybrid_model_/27272902CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/272729022024-10-21T17:43:32Z
spellingShingle Conceptual framework for the implementation of the hybrid model.
Micanaldo Ernesto Francisco (18723706)
Biochemistry
Molecular Biology
Biotechnology
Ecology
Cancer
Infectious Diseases
Plant Biology
Virology
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
support vector machines
extreme gradient boosting
conditional inference forest
artificial neural networks
impending dengue outbreaks
spatiotemporal resolution differs
fine spatiotemporal scales
predicted dengue incidence
dengue incidence may
dengue incidence due
generalized additive models
dengue incidence prediction
spatiotemporal dengue prediction
quantitative pattern extraction
six spatiotemporal resolutions
six ml algorithms
novel hybrid approach
frequent zero values
stage quantitative prediction
dengue incidence data
inflated models cannot
enhance prediction accuracy
qualitative dengue variables
dengue incidence
spatiotemporal resolutions
hybrid approach
quantitative prediction
qualitative models
prediction accuracy
higher resolutions
environmental variables
binary variables
qualitative predictions
combining qualitative
xlink ">
study aimed
rare phenomena
random forests
predicting zero
model validation
inflated data
data distribution
control strategies
alternative solution
status_str publishedVersion
title Conceptual framework for the implementation of the hybrid model.
title_full Conceptual framework for the implementation of the hybrid model.
title_fullStr Conceptual framework for the implementation of the hybrid model.
title_full_unstemmed Conceptual framework for the implementation of the hybrid model.
title_short Conceptual framework for the implementation of the hybrid model.
title_sort Conceptual framework for the implementation of the hybrid model.
topic Biochemistry
Molecular Biology
Biotechnology
Ecology
Cancer
Infectious Diseases
Plant Biology
Virology
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
support vector machines
extreme gradient boosting
conditional inference forest
artificial neural networks
impending dengue outbreaks
spatiotemporal resolution differs
fine spatiotemporal scales
predicted dengue incidence
dengue incidence may
dengue incidence due
generalized additive models
dengue incidence prediction
spatiotemporal dengue prediction
quantitative pattern extraction
six spatiotemporal resolutions
six ml algorithms
novel hybrid approach
frequent zero values
stage quantitative prediction
dengue incidence data
inflated models cannot
enhance prediction accuracy
qualitative dengue variables
dengue incidence
spatiotemporal resolutions
hybrid approach
quantitative prediction
qualitative models
prediction accuracy
higher resolutions
environmental variables
binary variables
qualitative predictions
combining qualitative
xlink ">
study aimed
rare phenomena
random forests
predicting zero
model validation
inflated data
data distribution
control strategies
alternative solution