Data Sheet 1_Fine-tuning a local LLaMA-3 large language model for automated privacy-preserving physician letter generation in radiation oncology.pdf

Introduction<p>Generating physician letters is a time-consuming task in daily clinical practice.</p>Methods<p>This study investigates local fine-tuning of large language models (LLMs), specifically LLaMA models, for physician letter generation in a privacy-preserving manner within...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Yihao Hou (20555675) (author)
مؤلفون آخرون: Christoph Bert (34117) (author), Ahmed Gomaa (4115773) (author), Godehard Lahmer (20555678) (author), Daniel Höfler (10512040) (author), Thomas Weissmann (9960221) (author), Raphaela Voigt (20555681) (author), Philipp Schubert (9577160) (author), Charlotte Schmitter (6449204) (author), Alina Depardon (20555684) (author), Sabine Semrau (9577172) (author), Andreas Maier (6397244) (author), Rainer Fietkau (757368) (author), Yixing Huang (16324230) (author), Florian Putz (4048246) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852023628260966400
author Yihao Hou (20555675)
author2 Christoph Bert (34117)
Ahmed Gomaa (4115773)
Godehard Lahmer (20555678)
Daniel Höfler (10512040)
Thomas Weissmann (9960221)
Raphaela Voigt (20555681)
Philipp Schubert (9577160)
Charlotte Schmitter (6449204)
Alina Depardon (20555684)
Sabine Semrau (9577172)
Andreas Maier (6397244)
Rainer Fietkau (757368)
Yixing Huang (16324230)
Florian Putz (4048246)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author_facet Yihao Hou (20555675)
Christoph Bert (34117)
Ahmed Gomaa (4115773)
Godehard Lahmer (20555678)
Daniel Höfler (10512040)
Thomas Weissmann (9960221)
Raphaela Voigt (20555681)
Philipp Schubert (9577160)
Charlotte Schmitter (6449204)
Alina Depardon (20555684)
Sabine Semrau (9577172)
Andreas Maier (6397244)
Rainer Fietkau (757368)
Yixing Huang (16324230)
Florian Putz (4048246)
author_role author
dc.creator.none.fl_str_mv Yihao Hou (20555675)
Christoph Bert (34117)
Ahmed Gomaa (4115773)
Godehard Lahmer (20555678)
Daniel Höfler (10512040)
Thomas Weissmann (9960221)
Raphaela Voigt (20555681)
Philipp Schubert (9577160)
Charlotte Schmitter (6449204)
Alina Depardon (20555684)
Sabine Semrau (9577172)
Andreas Maier (6397244)
Rainer Fietkau (757368)
Yixing Huang (16324230)
Florian Putz (4048246)
dc.date.none.fl_str_mv 2025-01-14T06:07:49Z
dc.identifier.none.fl_str_mv 10.3389/frai.2024.1493716.s001
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Data_Sheet_1_Fine-tuning_a_local_LLaMA-3_large_language_model_for_automated_privacy-preserving_physician_letter_generation_in_radiation_oncology_pdf/28201901
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Knowledge Representation and Machine Learning
radiation oncology
data privacy
parameter-efficient fine-tuning
LLaMA
fine-tuning
physician letter
large language model
LLM
dc.title.none.fl_str_mv Data Sheet 1_Fine-tuning a local LLaMA-3 large language model for automated privacy-preserving physician letter generation in radiation oncology.pdf
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description Introduction<p>Generating physician letters is a time-consuming task in daily clinical practice.</p>Methods<p>This study investigates local fine-tuning of large language models (LLMs), specifically LLaMA models, for physician letter generation in a privacy-preserving manner within the field of radiation oncology.</p>Results<p>Our findings demonstrate that base LLaMA models, without fine-tuning, are inadequate for effectively generating physician letters. The QLoRA algorithm provides an efficient method for local intra-institutional fine-tuning of LLMs with limited computational resources (i.e., a single 48 GB GPU workstation within the hospital). The fine-tuned LLM successfully learns radiation oncology-specific information and generates physician letters in an institution-specific style. ROUGE scores of the generated summary reports highlight the superiority of the 8B LLaMA-3 model over the 13B LLaMA-2 model. Further multidimensional physician evaluations of 10 cases reveal that, although the fine-tuned LLaMA-3 model has limited capacity to generate content beyond the provided input data, it successfully generates salutations, diagnoses and treatment histories, recommendations for further treatment, and planned schedules. Overall, clinical benefit was rated highly by the clinical experts (average score of 3.4 on a 4-point scale).</p>Discussion<p>With careful physician review and correction, automated LLM-based physician letter generation has significant practical value.</p>
eu_rights_str_mv openAccess
id Manara_85fe389b4eecbd752d13284edfba2417
identifier_str_mv 10.3389/frai.2024.1493716.s001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28201901
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Data Sheet 1_Fine-tuning a local LLaMA-3 large language model for automated privacy-preserving physician letter generation in radiation oncology.pdfYihao Hou (20555675)Christoph Bert (34117)Ahmed Gomaa (4115773)Godehard Lahmer (20555678)Daniel Höfler (10512040)Thomas Weissmann (9960221)Raphaela Voigt (20555681)Philipp Schubert (9577160)Charlotte Schmitter (6449204)Alina Depardon (20555684)Sabine Semrau (9577172)Andreas Maier (6397244)Rainer Fietkau (757368)Yixing Huang (16324230)Florian Putz (4048246)Knowledge Representation and Machine Learningradiation oncologydata privacyparameter-efficient fine-tuningLLaMAfine-tuningphysician letterlarge language modelLLMIntroduction<p>Generating physician letters is a time-consuming task in daily clinical practice.</p>Methods<p>This study investigates local fine-tuning of large language models (LLMs), specifically LLaMA models, for physician letter generation in a privacy-preserving manner within the field of radiation oncology.</p>Results<p>Our findings demonstrate that base LLaMA models, without fine-tuning, are inadequate for effectively generating physician letters. The QLoRA algorithm provides an efficient method for local intra-institutional fine-tuning of LLMs with limited computational resources (i.e., a single 48 GB GPU workstation within the hospital). The fine-tuned LLM successfully learns radiation oncology-specific information and generates physician letters in an institution-specific style. ROUGE scores of the generated summary reports highlight the superiority of the 8B LLaMA-3 model over the 13B LLaMA-2 model. Further multidimensional physician evaluations of 10 cases reveal that, although the fine-tuned LLaMA-3 model has limited capacity to generate content beyond the provided input data, it successfully generates salutations, diagnoses and treatment histories, recommendations for further treatment, and planned schedules. Overall, clinical benefit was rated highly by the clinical experts (average score of 3.4 on a 4-point scale).</p>Discussion<p>With careful physician review and correction, automated LLM-based physician letter generation has significant practical value.</p>2025-01-14T06:07:49ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.3389/frai.2024.1493716.s001https://figshare.com/articles/dataset/Data_Sheet_1_Fine-tuning_a_local_LLaMA-3_large_language_model_for_automated_privacy-preserving_physician_letter_generation_in_radiation_oncology_pdf/28201901CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/282019012025-01-14T06:07:49Z
spellingShingle Data Sheet 1_Fine-tuning a local LLaMA-3 large language model for automated privacy-preserving physician letter generation in radiation oncology.pdf
Yihao Hou (20555675)
Knowledge Representation and Machine Learning
radiation oncology
data privacy
parameter-efficient fine-tuning
LLaMA
fine-tuning
physician letter
large language model
LLM
status_str publishedVersion
title Data Sheet 1_Fine-tuning a local LLaMA-3 large language model for automated privacy-preserving physician letter generation in radiation oncology.pdf
title_full Data Sheet 1_Fine-tuning a local LLaMA-3 large language model for automated privacy-preserving physician letter generation in radiation oncology.pdf
title_fullStr Data Sheet 1_Fine-tuning a local LLaMA-3 large language model for automated privacy-preserving physician letter generation in radiation oncology.pdf
title_full_unstemmed Data Sheet 1_Fine-tuning a local LLaMA-3 large language model for automated privacy-preserving physician letter generation in radiation oncology.pdf
title_short Data Sheet 1_Fine-tuning a local LLaMA-3 large language model for automated privacy-preserving physician letter generation in radiation oncology.pdf
title_sort Data Sheet 1_Fine-tuning a local LLaMA-3 large language model for automated privacy-preserving physician letter generation in radiation oncology.pdf
topic Knowledge Representation and Machine Learning
radiation oncology
data privacy
parameter-efficient fine-tuning
LLaMA
fine-tuning
physician letter
large language model
LLM