The iterative process of genetic algorithm in the upper-level model.

<p>The iterative process of genetic algorithm in the upper-level model.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Zhipeng Huang (1759759) (author)
مؤلفون آخرون: Limin Yang (391341) (author), Jinlian Li (343111) (author), Tao Zhang (43681) (author), Zixian Qu (21568078) (author), Yusen Miao (21568081) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852019212348817408
author Zhipeng Huang (1759759)
author2 Limin Yang (391341)
Jinlian Li (343111)
Tao Zhang (43681)
Zixian Qu (21568078)
Yusen Miao (21568081)
author2_role author
author
author
author
author
author_facet Zhipeng Huang (1759759)
Limin Yang (391341)
Jinlian Li (343111)
Tao Zhang (43681)
Zixian Qu (21568078)
Yusen Miao (21568081)
author_role author
dc.creator.none.fl_str_mv Zhipeng Huang (1759759)
Limin Yang (391341)
Jinlian Li (343111)
Tao Zhang (43681)
Zixian Qu (21568078)
Yusen Miao (21568081)
dc.date.none.fl_str_mv 2025-06-18T17:50:07Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0326170.g007
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/The_iterative_process_of_genetic_algorithm_in_the_upper-level_model_/29359541
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Sociology
Science Policy
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
xi &# 8217
speed railway timetables
speed railway scheduling
speed railway corridor
speed rail operators
speed rail corridor
others remain difficult
low occupancy rates
genetic algorithm combined
defined operational cycle
various network arcs
three key attributes
resulting timetable balances
xlink "> high
level programming model
establishing departure times
analyzing passenger preferences
uniform departure intervals
passengers </ p
departure times
train timetable
state three
passenger demand
integrates preferences
dimensional network
departure time
wolfe method
typically based
travel demand
seat preference
seat classes
scientific rigor
nested frank
impedance functions
fare structures
fare cost
diverse demands
consistent across
case study
approach enhances
dc.title.none.fl_str_mv The iterative process of genetic algorithm in the upper-level model.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The iterative process of genetic algorithm in the upper-level model.</p>
eu_rights_str_mv openAccess
id Manara_876e3380703bb013dffaea2fd76f3c60
identifier_str_mv 10.1371/journal.pone.0326170.g007
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29359541
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The iterative process of genetic algorithm in the upper-level model.Zhipeng Huang (1759759)Limin Yang (391341)Jinlian Li (343111)Tao Zhang (43681)Zixian Qu (21568078)Yusen Miao (21568081)SociologyScience PolicyEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedxi &# 8217speed railway timetablesspeed railway schedulingspeed railway corridorspeed rail operatorsspeed rail corridorothers remain difficultlow occupancy ratesgenetic algorithm combineddefined operational cyclevarious network arcsthree key attributesresulting timetable balancesxlink "> highlevel programming modelestablishing departure timesanalyzing passenger preferencesuniform departure intervalspassengers </ pdeparture timestrain timetablestate threepassenger demandintegrates preferencesdimensional networkdeparture timewolfe methodtypically basedtravel demandseat preferenceseat classesscientific rigornested frankimpedance functionsfare structuresfare costdiverse demandsconsistent acrosscase studyapproach enhances<p>The iterative process of genetic algorithm in the upper-level model.</p>2025-06-18T17:50:07ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0326170.g007https://figshare.com/articles/figure/The_iterative_process_of_genetic_algorithm_in_the_upper-level_model_/29359541CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/293595412025-06-18T17:50:07Z
spellingShingle The iterative process of genetic algorithm in the upper-level model.
Zhipeng Huang (1759759)
Sociology
Science Policy
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
xi &# 8217
speed railway timetables
speed railway scheduling
speed railway corridor
speed rail operators
speed rail corridor
others remain difficult
low occupancy rates
genetic algorithm combined
defined operational cycle
various network arcs
three key attributes
resulting timetable balances
xlink "> high
level programming model
establishing departure times
analyzing passenger preferences
uniform departure intervals
passengers </ p
departure times
train timetable
state three
passenger demand
integrates preferences
dimensional network
departure time
wolfe method
typically based
travel demand
seat preference
seat classes
scientific rigor
nested frank
impedance functions
fare structures
fare cost
diverse demands
consistent across
case study
approach enhances
status_str publishedVersion
title The iterative process of genetic algorithm in the upper-level model.
title_full The iterative process of genetic algorithm in the upper-level model.
title_fullStr The iterative process of genetic algorithm in the upper-level model.
title_full_unstemmed The iterative process of genetic algorithm in the upper-level model.
title_short The iterative process of genetic algorithm in the upper-level model.
title_sort The iterative process of genetic algorithm in the upper-level model.
topic Sociology
Science Policy
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
xi &# 8217
speed railway timetables
speed railway scheduling
speed railway corridor
speed rail operators
speed rail corridor
others remain difficult
low occupancy rates
genetic algorithm combined
defined operational cycle
various network arcs
three key attributes
resulting timetable balances
xlink "> high
level programming model
establishing departure times
analyzing passenger preferences
uniform departure intervals
passengers </ p
departure times
train timetable
state three
passenger demand
integrates preferences
dimensional network
departure time
wolfe method
typically based
travel demand
seat preference
seat classes
scientific rigor
nested frank
impedance functions
fare structures
fare cost
diverse demands
consistent across
case study
approach enhances