Original Outline: d_fine.

<div><p>Surface roughness is a critical parameter used to describe the microscopic geometric deviations of a part, and serves as an essential indicator for assessing the quality of surface processing in various mechanical components. This study evaluates Singular Spectrum Analysis (SSA)...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Ziming Pang (22683291) (author)
Autres auteurs: Xiaochuan Gan (22683294) (author), Ming Kong (1836898) (author)
Publié: 2025
Sujets:
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
_version_ 1849927629141966848
author Ziming Pang (22683291)
author2 Xiaochuan Gan (22683294)
Ming Kong (1836898)
author2_role author
author
author_facet Ziming Pang (22683291)
Xiaochuan Gan (22683294)
Ming Kong (1836898)
author_role author
dc.creator.none.fl_str_mv Ziming Pang (22683291)
Xiaochuan Gan (22683294)
Ming Kong (1836898)
dc.date.none.fl_str_mv 2025-11-25T18:25:41Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0336936.g001
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Original_Outline_d_fine_/30713481
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Medicine
Microbiology
Cell Biology
Sociology
Immunology
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
various mechanical components
microscopic geometric deviations
critical parameter used
assessed profile (<
arithmetical mean deviation
div >< p
findings establish ssa
findings indicate
window length
viable alternative
surface roughness
surface processing
study investigates
ssa ’
ssa technique
rq </
rku </
ra </
obtained using
gaussian filter
essential indicator
broad applications
dc.title.none.fl_str_mv Original Outline: d_fine.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <div><p>Surface roughness is a critical parameter used to describe the microscopic geometric deviations of a part, and serves as an essential indicator for assessing the quality of surface processing in various mechanical components. This study evaluates Singular Spectrum Analysis (SSA) for surface roughness profile separation, comparing its effectiveness with the ISO standard Gaussian filter. Using NIST roughness measurement data, this study investigates how SSA’s window length and grouping method affect roughness parameters. The findings indicate that with an appropriately chosen window length, the SSA technique can effectively separate roughness signals and yield roughness parameter values comparable to those obtained using the Gaussian filter, such as the arithmetical mean deviation of the assessed profile (<i>Ra</i>), the root mean square deviation of the assessed profile (<i>Rq</i>), and the kurtosis of the assessed profile (<i>Rku</i>). These findings establish SSA as a viable alternative for surface roughness profile separation, with broad applications in surface metrology.</p></div>
eu_rights_str_mv openAccess
id Manara_883c218505919cfa67dc49a92fa305cf
identifier_str_mv 10.1371/journal.pone.0336936.g001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30713481
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Original Outline: d_fine.Ziming Pang (22683291)Xiaochuan Gan (22683294)Ming Kong (1836898)BiochemistryMedicineMicrobiologyCell BiologySociologyImmunologyEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedvarious mechanical componentsmicroscopic geometric deviationscritical parameter usedassessed profile (<arithmetical mean deviationdiv >< pfindings establish ssafindings indicatewindow lengthviable alternativesurface roughnesssurface processingstudy investigatesssa ’ssa techniquerq </rku </ra </obtained usinggaussian filteressential indicatorbroad applications<div><p>Surface roughness is a critical parameter used to describe the microscopic geometric deviations of a part, and serves as an essential indicator for assessing the quality of surface processing in various mechanical components. This study evaluates Singular Spectrum Analysis (SSA) for surface roughness profile separation, comparing its effectiveness with the ISO standard Gaussian filter. Using NIST roughness measurement data, this study investigates how SSA’s window length and grouping method affect roughness parameters. The findings indicate that with an appropriately chosen window length, the SSA technique can effectively separate roughness signals and yield roughness parameter values comparable to those obtained using the Gaussian filter, such as the arithmetical mean deviation of the assessed profile (<i>Ra</i>), the root mean square deviation of the assessed profile (<i>Rq</i>), and the kurtosis of the assessed profile (<i>Rku</i>). These findings establish SSA as a viable alternative for surface roughness profile separation, with broad applications in surface metrology.</p></div>2025-11-25T18:25:41ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0336936.g001https://figshare.com/articles/figure/Original_Outline_d_fine_/30713481CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307134812025-11-25T18:25:41Z
spellingShingle Original Outline: d_fine.
Ziming Pang (22683291)
Biochemistry
Medicine
Microbiology
Cell Biology
Sociology
Immunology
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
various mechanical components
microscopic geometric deviations
critical parameter used
assessed profile (<
arithmetical mean deviation
div >< p
findings establish ssa
findings indicate
window length
viable alternative
surface roughness
surface processing
study investigates
ssa ’
ssa technique
rq </
rku </
ra </
obtained using
gaussian filter
essential indicator
broad applications
status_str publishedVersion
title Original Outline: d_fine.
title_full Original Outline: d_fine.
title_fullStr Original Outline: d_fine.
title_full_unstemmed Original Outline: d_fine.
title_short Original Outline: d_fine.
title_sort Original Outline: d_fine.
topic Biochemistry
Medicine
Microbiology
Cell Biology
Sociology
Immunology
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
various mechanical components
microscopic geometric deviations
critical parameter used
assessed profile (<
arithmetical mean deviation
div >< p
findings establish ssa
findings indicate
window length
viable alternative
surface roughness
surface processing
study investigates
ssa ’
ssa technique
rq </
rku </
ra </
obtained using
gaussian filter
essential indicator
broad applications