Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.

<p>Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.</p>

Saved in:
Bibliographic Details
Main Author: Muhammad Asim Shahid (15285640) (author)
Other Authors: Muhammad Mansoor Alam (15285643) (author), Mazliham Mohd Su’ud (15285646) (author)
Published: 2024
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852024743337656320
author Muhammad Asim Shahid (15285640)
author2 Muhammad Mansoor Alam (15285643)
Mazliham Mohd Su’ud (15285646)
author2_role author
author
author_facet Muhammad Asim Shahid (15285640)
Muhammad Mansoor Alam (15285643)
Mazliham Mohd Su’ud (15285646)
author_role author
dc.creator.none.fl_str_mv Muhammad Asim Shahid (15285640)
Muhammad Mansoor Alam (15285643)
Mazliham Mohd Su’ud (15285646)
dc.date.none.fl_str_mv 2024-12-03T18:37:20Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0311089.g006
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Bagging_classifier_s_confusion_matrix_for_accuracy_fault_prediction_based_on_CPU-mem_mono_/27955789
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biotechnology
Plant Biology
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
simplified resource allocation
recent years due
naive bayes tree
mem multi classifier
hdd multi classifier
primary data results
nb tree ).
less fault prediction
fact based analysis
highest accuracy percentage
mem mono classifier
10 folds cross
highest accuracy rate
78 %, 95
good algorithm complexity
nb tree
fault prediction
highest accuracy
mono classifier
95 %,
accuracy rate
fold cross
decision tree
time complexity
algorithm complexity
9 %,
xlink ">
taking 1
past decade
many corporations
make modifications
least amount
increased significantly
improving reliability
exponential rise
ensure accessibility
dl4jmlp ),
decision trees
9 seconds
11 seconds
dc.title.none.fl_str_mv Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.</p>
eu_rights_str_mv openAccess
id Manara_8a01fc782f7c7cfeaaa094cd91b331c8
identifier_str_mv 10.1371/journal.pone.0311089.g006
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/27955789
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.Muhammad Asim Shahid (15285640)Muhammad Mansoor Alam (15285643)Mazliham Mohd Su’ud (15285646)BiotechnologyPlant BiologySpace ScienceEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedsimplified resource allocationrecent years duenaive bayes treemem multi classifierhdd multi classifierprimary data resultsnb tree ).less fault predictionfact based analysishighest accuracy percentagemem mono classifier10 folds crosshighest accuracy rate78 %, 95good algorithm complexitynb treefault predictionhighest accuracymono classifier95 %,accuracy ratefold crossdecision treetime complexityalgorithm complexity9 %,xlink ">taking 1past decademany corporationsmake modificationsleast amountincreased significantlyimproving reliabilityexponential riseensure accessibilitydl4jmlp ),decision trees9 seconds11 seconds<p>Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.</p>2024-12-03T18:37:20ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0311089.g006https://figshare.com/articles/figure/Bagging_classifier_s_confusion_matrix_for_accuracy_fault_prediction_based_on_CPU-mem_mono_/27955789CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/279557892024-12-03T18:37:20Z
spellingShingle Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.
Muhammad Asim Shahid (15285640)
Biotechnology
Plant Biology
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
simplified resource allocation
recent years due
naive bayes tree
mem multi classifier
hdd multi classifier
primary data results
nb tree ).
less fault prediction
fact based analysis
highest accuracy percentage
mem mono classifier
10 folds cross
highest accuracy rate
78 %, 95
good algorithm complexity
nb tree
fault prediction
highest accuracy
mono classifier
95 %,
accuracy rate
fold cross
decision tree
time complexity
algorithm complexity
9 %,
xlink ">
taking 1
past decade
many corporations
make modifications
least amount
increased significantly
improving reliability
exponential rise
ensure accessibility
dl4jmlp ),
decision trees
9 seconds
11 seconds
status_str publishedVersion
title Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.
title_full Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.
title_fullStr Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.
title_full_unstemmed Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.
title_short Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.
title_sort Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.
topic Biotechnology
Plant Biology
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
simplified resource allocation
recent years due
naive bayes tree
mem multi classifier
hdd multi classifier
primary data results
nb tree ).
less fault prediction
fact based analysis
highest accuracy percentage
mem mono classifier
10 folds cross
highest accuracy rate
78 %, 95
good algorithm complexity
nb tree
fault prediction
highest accuracy
mono classifier
95 %,
accuracy rate
fold cross
decision tree
time complexity
algorithm complexity
9 %,
xlink ">
taking 1
past decade
many corporations
make modifications
least amount
increased significantly
improving reliability
exponential rise
ensure accessibility
dl4jmlp ),
decision trees
9 seconds
11 seconds