A Terminal Germanium Oxido Dianion by Structural Constraints
Terminal oxides of late transition and main group metal(loid)s are typically highly basic and intrinsically prone to oligomerization. Their isolation traditionally relied on stabilizing π-interactions with the metal, external Lewis acids, or hydrogen bonding. Here, we present an alternative strategy...
সংরক্ষণ করুন:
| প্রধান লেখক: | |
|---|---|
| অন্যান্য লেখক: | |
| প্রকাশিত: |
2025
|
| বিষয়গুলি: | |
| ট্যাগগুলো: |
ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
|
| _version_ | 1849927644861169664 |
|---|---|
| author | Valentin D. Hannibal (19528901) |
| author2 | Lutz Greb (1412410) |
| author2_role | author |
| author_facet | Valentin D. Hannibal (19528901) Lutz Greb (1412410) |
| author_role | author |
| dc.creator.none.fl_str_mv | Valentin D. Hannibal (19528901) Lutz Greb (1412410) |
| dc.date.none.fl_str_mv | 2025-11-24T12:34:56Z |
| dc.identifier.none.fl_str_mv | 10.1021/jacs.5c12601.s002 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/dataset/A_Terminal_Germanium_Oxido_Dianion_by_Structural_Constraints/30694555 |
| dc.rights.none.fl_str_mv | CC BY-NC 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Biophysics Biochemistry Neuroscience Biotechnology Virology Computational Biology Chemical Sciences not elsewhere classified ≈ 34 ), significant lumo lowering reactivity studies identify le bel configuration isolation traditionally relied external lewis acids amido macrocyclic ligand typically highly basic geo ]< sup 2 –</ sup main group metal 2 </ sub highly polarized k </ </ sub van ’ transfer agent terminal oxide structural motif structural constraints structural constraint strong nucleophile state superbases stabilizing π stabilize terminal single bond nearly square molecular germanate late transition kind monomeric intrinsically prone hydrogen bonding fundamental importance findings highlight effective strategy double deprotonation brønsted superbase bond activation analyses reveal alternative strategy adduct affords >< sub |
| dc.title.none.fl_str_mv | A Terminal Germanium Oxido Dianion by Structural Constraints |
| dc.type.none.fl_str_mv | Dataset info:eu-repo/semantics/publishedVersion dataset |
| description | Terminal oxides of late transition and main group metal(loid)s are typically highly basic and intrinsically prone to oligomerization. Their isolation traditionally relied on stabilizing π-interactions with the metal, external Lewis acids, or hydrogen bonding. Here, we present an alternative strategy: enforcing the anti-Van’t Hoff/Le Bel configuration by structural constraints. A nearly square-planar germanium center embedded in a tetra-amido macrocyclic ligand (TAML) exhibits enhanced Lewis acidity due to significant LUMO lowering. Double deprotonation of its H<sub>2</sub>O adduct affords the first example of a terminal germanium oxido dianion, [GeO]<sup>2–</sup>, which can also be seen as a first-of-its-kind monomeric, molecular germanate. Spectroscopic, crystallographic, and computational (NBO, QTAIM, and ETS-NOCV) analyses reveal a highly polarized, predominantly ionic Ge–O single bond. Reactivity studies identify this terminal oxide as a Brønsted superbase (p<i>K</i><sub>a</sub> (THF) ≈ 34), a strong nucleophile, and an efficient O<sup>2–</sup> transfer agent. The findings highlight the structural constraint as an effective strategy to stabilize terminal M–O species, a structural motif of fundamental importance in bond activation, catalysis, and solid-state superbases. |
| eu_rights_str_mv | openAccess |
| id | Manara_8b1ab926442f37738b77d84371f5d9c1 |
| identifier_str_mv | 10.1021/jacs.5c12601.s002 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/30694555 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY-NC 4.0 |
| spelling | A Terminal Germanium Oxido Dianion by Structural ConstraintsValentin D. Hannibal (19528901)Lutz Greb (1412410)BiophysicsBiochemistryNeuroscienceBiotechnologyVirologyComputational BiologyChemical Sciences not elsewhere classified≈ 34 ),significant lumo loweringreactivity studies identifyle bel configurationisolation traditionally reliedexternal lewis acidsamido macrocyclic ligandtypically highly basicgeo ]< sup2 –</ supmain group metal2 </ subhighly polarizedk </</ subvan ’transfer agentterminal oxidestructural motifstructural constraintsstructural constraintstrong nucleophilestate superbasesstabilizing πstabilize terminalsingle bondnearly squaremolecular germanatelate transitionkind monomericintrinsically pronehydrogen bondingfundamental importancefindings highlighteffective strategydouble deprotonationbrønsted superbasebond activationanalyses revealalternative strategyadduct affords>< subTerminal oxides of late transition and main group metal(loid)s are typically highly basic and intrinsically prone to oligomerization. Their isolation traditionally relied on stabilizing π-interactions with the metal, external Lewis acids, or hydrogen bonding. Here, we present an alternative strategy: enforcing the anti-Van’t Hoff/Le Bel configuration by structural constraints. A nearly square-planar germanium center embedded in a tetra-amido macrocyclic ligand (TAML) exhibits enhanced Lewis acidity due to significant LUMO lowering. Double deprotonation of its H<sub>2</sub>O adduct affords the first example of a terminal germanium oxido dianion, [GeO]<sup>2–</sup>, which can also be seen as a first-of-its-kind monomeric, molecular germanate. Spectroscopic, crystallographic, and computational (NBO, QTAIM, and ETS-NOCV) analyses reveal a highly polarized, predominantly ionic Ge–O single bond. Reactivity studies identify this terminal oxide as a Brønsted superbase (p<i>K</i><sub>a</sub> (THF) ≈ 34), a strong nucleophile, and an efficient O<sup>2–</sup> transfer agent. The findings highlight the structural constraint as an effective strategy to stabilize terminal M–O species, a structural motif of fundamental importance in bond activation, catalysis, and solid-state superbases.2025-11-24T12:34:56ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1021/jacs.5c12601.s002https://figshare.com/articles/dataset/A_Terminal_Germanium_Oxido_Dianion_by_Structural_Constraints/30694555CC BY-NC 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306945552025-11-24T12:34:56Z |
| spellingShingle | A Terminal Germanium Oxido Dianion by Structural Constraints Valentin D. Hannibal (19528901) Biophysics Biochemistry Neuroscience Biotechnology Virology Computational Biology Chemical Sciences not elsewhere classified ≈ 34 ), significant lumo lowering reactivity studies identify le bel configuration isolation traditionally relied external lewis acids amido macrocyclic ligand typically highly basic geo ]< sup 2 –</ sup main group metal 2 </ sub highly polarized k </ </ sub van ’ transfer agent terminal oxide structural motif structural constraints structural constraint strong nucleophile state superbases stabilizing π stabilize terminal single bond nearly square molecular germanate late transition kind monomeric intrinsically prone hydrogen bonding fundamental importance findings highlight effective strategy double deprotonation brønsted superbase bond activation analyses reveal alternative strategy adduct affords >< sub |
| status_str | publishedVersion |
| title | A Terminal Germanium Oxido Dianion by Structural Constraints |
| title_full | A Terminal Germanium Oxido Dianion by Structural Constraints |
| title_fullStr | A Terminal Germanium Oxido Dianion by Structural Constraints |
| title_full_unstemmed | A Terminal Germanium Oxido Dianion by Structural Constraints |
| title_short | A Terminal Germanium Oxido Dianion by Structural Constraints |
| title_sort | A Terminal Germanium Oxido Dianion by Structural Constraints |
| topic | Biophysics Biochemistry Neuroscience Biotechnology Virology Computational Biology Chemical Sciences not elsewhere classified ≈ 34 ), significant lumo lowering reactivity studies identify le bel configuration isolation traditionally relied external lewis acids amido macrocyclic ligand typically highly basic geo ]< sup 2 –</ sup main group metal 2 </ sub highly polarized k </ </ sub van ’ transfer agent terminal oxide structural motif structural constraints structural constraint strong nucleophile state superbases stabilizing π stabilize terminal single bond nearly square molecular germanate late transition kind monomeric intrinsically prone hydrogen bonding fundamental importance findings highlight effective strategy double deprotonation brønsted superbase bond activation analyses reveal alternative strategy adduct affords >< sub |