A Terminal Germanium Oxido Dianion by Structural Constraints

Terminal oxides of late transition and main group metal(loid)s are typically highly basic and intrinsically prone to oligomerization. Their isolation traditionally relied on stabilizing π-interactions with the metal, external Lewis acids, or hydrogen bonding. Here, we present an alternative strategy...

সম্পূর্ণ বিবরণ

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Valentin D. Hannibal (19528901) (author)
অন্যান্য লেখক: Lutz Greb (1412410) (author)
প্রকাশিত: 2025
বিষয়গুলি:
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
_version_ 1849927644861169664
author Valentin D. Hannibal (19528901)
author2 Lutz Greb (1412410)
author2_role author
author_facet Valentin D. Hannibal (19528901)
Lutz Greb (1412410)
author_role author
dc.creator.none.fl_str_mv Valentin D. Hannibal (19528901)
Lutz Greb (1412410)
dc.date.none.fl_str_mv 2025-11-24T12:34:56Z
dc.identifier.none.fl_str_mv 10.1021/jacs.5c12601.s002
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/A_Terminal_Germanium_Oxido_Dianion_by_Structural_Constraints/30694555
dc.rights.none.fl_str_mv CC BY-NC 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biophysics
Biochemistry
Neuroscience
Biotechnology
Virology
Computational Biology
Chemical Sciences not elsewhere classified
≈ 34 ),
significant lumo lowering
reactivity studies identify
le bel configuration
isolation traditionally relied
external lewis acids
amido macrocyclic ligand
typically highly basic
geo ]< sup
2 –</ sup
main group metal
2 </ sub
highly polarized
k </
</ sub
van ’
transfer agent
terminal oxide
structural motif
structural constraints
structural constraint
strong nucleophile
state superbases
stabilizing π
stabilize terminal
single bond
nearly square
molecular germanate
late transition
kind monomeric
intrinsically prone
hydrogen bonding
fundamental importance
findings highlight
effective strategy
double deprotonation
brønsted superbase
bond activation
analyses reveal
alternative strategy
adduct affords
>< sub
dc.title.none.fl_str_mv A Terminal Germanium Oxido Dianion by Structural Constraints
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description Terminal oxides of late transition and main group metal(loid)s are typically highly basic and intrinsically prone to oligomerization. Their isolation traditionally relied on stabilizing π-interactions with the metal, external Lewis acids, or hydrogen bonding. Here, we present an alternative strategy: enforcing the anti-Van’t Hoff/Le Bel configuration by structural constraints. A nearly square-planar germanium center embedded in a tetra-amido macrocyclic ligand (TAML) exhibits enhanced Lewis acidity due to significant LUMO lowering. Double deprotonation of its H<sub>2</sub>O adduct affords the first example of a terminal germanium oxido dianion, [GeO]<sup>2–</sup>, which can also be seen as a first-of-its-kind monomeric, molecular germanate. Spectroscopic, crystallographic, and computational (NBO, QTAIM, and ETS-NOCV) analyses reveal a highly polarized, predominantly ionic Ge–O single bond. Reactivity studies identify this terminal oxide as a Brønsted superbase (p<i>K</i><sub>a</sub> (THF) ≈ 34), a strong nucleophile, and an efficient O<sup>2–</sup> transfer agent. The findings highlight the structural constraint as an effective strategy to stabilize terminal M–O species, a structural motif of fundamental importance in bond activation, catalysis, and solid-state superbases.
eu_rights_str_mv openAccess
id Manara_8b1ab926442f37738b77d84371f5d9c1
identifier_str_mv 10.1021/jacs.5c12601.s002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30694555
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY-NC 4.0
spelling A Terminal Germanium Oxido Dianion by Structural ConstraintsValentin D. Hannibal (19528901)Lutz Greb (1412410)BiophysicsBiochemistryNeuroscienceBiotechnologyVirologyComputational BiologyChemical Sciences not elsewhere classified≈ 34 ),significant lumo loweringreactivity studies identifyle bel configurationisolation traditionally reliedexternal lewis acidsamido macrocyclic ligandtypically highly basicgeo ]< sup2 –</ supmain group metal2 </ subhighly polarizedk </</ subvan ’transfer agentterminal oxidestructural motifstructural constraintsstructural constraintstrong nucleophilestate superbasesstabilizing πstabilize terminalsingle bondnearly squaremolecular germanatelate transitionkind monomericintrinsically pronehydrogen bondingfundamental importancefindings highlighteffective strategydouble deprotonationbrønsted superbasebond activationanalyses revealalternative strategyadduct affords>< subTerminal oxides of late transition and main group metal(loid)s are typically highly basic and intrinsically prone to oligomerization. Their isolation traditionally relied on stabilizing π-interactions with the metal, external Lewis acids, or hydrogen bonding. Here, we present an alternative strategy: enforcing the anti-Van’t Hoff/Le Bel configuration by structural constraints. A nearly square-planar germanium center embedded in a tetra-amido macrocyclic ligand (TAML) exhibits enhanced Lewis acidity due to significant LUMO lowering. Double deprotonation of its H<sub>2</sub>O adduct affords the first example of a terminal germanium oxido dianion, [GeO]<sup>2–</sup>, which can also be seen as a first-of-its-kind monomeric, molecular germanate. Spectroscopic, crystallographic, and computational (NBO, QTAIM, and ETS-NOCV) analyses reveal a highly polarized, predominantly ionic Ge–O single bond. Reactivity studies identify this terminal oxide as a Brønsted superbase (p<i>K</i><sub>a</sub> (THF) ≈ 34), a strong nucleophile, and an efficient O<sup>2–</sup> transfer agent. The findings highlight the structural constraint as an effective strategy to stabilize terminal M–O species, a structural motif of fundamental importance in bond activation, catalysis, and solid-state superbases.2025-11-24T12:34:56ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1021/jacs.5c12601.s002https://figshare.com/articles/dataset/A_Terminal_Germanium_Oxido_Dianion_by_Structural_Constraints/30694555CC BY-NC 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306945552025-11-24T12:34:56Z
spellingShingle A Terminal Germanium Oxido Dianion by Structural Constraints
Valentin D. Hannibal (19528901)
Biophysics
Biochemistry
Neuroscience
Biotechnology
Virology
Computational Biology
Chemical Sciences not elsewhere classified
≈ 34 ),
significant lumo lowering
reactivity studies identify
le bel configuration
isolation traditionally relied
external lewis acids
amido macrocyclic ligand
typically highly basic
geo ]< sup
2 –</ sup
main group metal
2 </ sub
highly polarized
k </
</ sub
van ’
transfer agent
terminal oxide
structural motif
structural constraints
structural constraint
strong nucleophile
state superbases
stabilizing π
stabilize terminal
single bond
nearly square
molecular germanate
late transition
kind monomeric
intrinsically prone
hydrogen bonding
fundamental importance
findings highlight
effective strategy
double deprotonation
brønsted superbase
bond activation
analyses reveal
alternative strategy
adduct affords
>< sub
status_str publishedVersion
title A Terminal Germanium Oxido Dianion by Structural Constraints
title_full A Terminal Germanium Oxido Dianion by Structural Constraints
title_fullStr A Terminal Germanium Oxido Dianion by Structural Constraints
title_full_unstemmed A Terminal Germanium Oxido Dianion by Structural Constraints
title_short A Terminal Germanium Oxido Dianion by Structural Constraints
title_sort A Terminal Germanium Oxido Dianion by Structural Constraints
topic Biophysics
Biochemistry
Neuroscience
Biotechnology
Virology
Computational Biology
Chemical Sciences not elsewhere classified
≈ 34 ),
significant lumo lowering
reactivity studies identify
le bel configuration
isolation traditionally relied
external lewis acids
amido macrocyclic ligand
typically highly basic
geo ]< sup
2 –</ sup
main group metal
2 </ sub
highly polarized
k </
</ sub
van ’
transfer agent
terminal oxide
structural motif
structural constraints
structural constraint
strong nucleophile
state superbases
stabilizing π
stabilize terminal
single bond
nearly square
molecular germanate
late transition
kind monomeric
intrinsically prone
hydrogen bonding
fundamental importance
findings highlight
effective strategy
double deprotonation
brønsted superbase
bond activation
analyses reveal
alternative strategy
adduct affords
>< sub