Summary ANOVA—Runtime results.

<div><p>The expansion of electric vehicles (EVs) challenges electricity grids by increasing charging demand, thereby making Demand-Side Management (DSM) strategies essential to maintaining balance between supply and demand. Among these strategies, the Valley-Filling approach has emerged...

Full description

Saved in:
Bibliographic Details
Main Author: Guilherme Gloriano de Souza (20521868) (author)
Other Authors: Ricardo Ribeiro dos Santos (19238869) (author), Ruben Barros Godoy (20521871) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<div><p>The expansion of electric vehicles (EVs) challenges electricity grids by increasing charging demand, thereby making Demand-Side Management (DSM) strategies essential to maintaining balance between supply and demand. Among these strategies, the Valley-Filling approach has emerged as a promising method to optimize renewable energy utilization and alleviate grid stress. This study introduces a novel heuristic, Load Conservation Valley-Filling (LCVF), which builds on the Classical and Optimistic Valley-Filling approaches by incorporating dynamic load conservation principles, enabling better alignment of EV charging with grid capacity. We conducted a comprehensive analysis of the heuristic across five EV charging scenarios. In both the Original and Flexible scenarios, LCVF reduced energy demand by up to 10.65%, demonstrating its adaptability and effectiveness. Notably, in the 24-hour Availability scenario, LCVF achieved a reduction of over 20% in energy demand compared to CVF. These findings indicate that LCVF could play a crucial role in enhancing real-world EV charging infrastructure, boosting energy efficiency and grid stability. By integrating DSM strategies like LCVF, energy grids can better accommodate renewable energy sources, promoting more sustainable operations.</p></div>