Uniform Manifold Approximation and Projection (UMAP)-based sorting enhances detection of low-firing rate neurons and boosts mutual information.

<p><b>(A)</b> Cumulative average firing rate distributions for UMAP-based and principal component analysis (PCA)-based spike sorting reveal that UMAP identifies more low-firing neurons, reflecting greater sensitivity to sparse firing. <b>(B)</b> Anatomical maps illustra...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Daniel Suárez-Barrera (22676654) (author)
Outros Autores: Lucas Bayones (22676657) (author), Norberto Encinas-Rodríguez (22676660) (author), Sergio Parra (22676663) (author), Viktor Monroy (22676666) (author), Sebastián Pujalte (22676669) (author), Bernardo Andrade-Ortega (22676672) (author), Héctor Díaz (22676675) (author), Manuel Alvarez (3468647) (author), Antonio Zainos (22676678) (author), Alessio Franci (143351) (author), Román Rossi-Pool (22676681) (author)
Publicado em: 2025
Assuntos:
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
_version_ 1849927641752141824
author Daniel Suárez-Barrera (22676654)
author2 Lucas Bayones (22676657)
Norberto Encinas-Rodríguez (22676660)
Sergio Parra (22676663)
Viktor Monroy (22676666)
Sebastián Pujalte (22676669)
Bernardo Andrade-Ortega (22676672)
Héctor Díaz (22676675)
Manuel Alvarez (3468647)
Antonio Zainos (22676678)
Alessio Franci (143351)
Román Rossi-Pool (22676681)
author2_role author
author
author
author
author
author
author
author
author
author
author
author_facet Daniel Suárez-Barrera (22676654)
Lucas Bayones (22676657)
Norberto Encinas-Rodríguez (22676660)
Sergio Parra (22676663)
Viktor Monroy (22676666)
Sebastián Pujalte (22676669)
Bernardo Andrade-Ortega (22676672)
Héctor Díaz (22676675)
Manuel Alvarez (3468647)
Antonio Zainos (22676678)
Alessio Franci (143351)
Román Rossi-Pool (22676681)
author_role author
dc.creator.none.fl_str_mv Daniel Suárez-Barrera (22676654)
Lucas Bayones (22676657)
Norberto Encinas-Rodríguez (22676660)
Sergio Parra (22676663)
Viktor Monroy (22676666)
Sebastián Pujalte (22676669)
Bernardo Andrade-Ortega (22676672)
Héctor Díaz (22676675)
Manuel Alvarez (3468647)
Antonio Zainos (22676678)
Alessio Franci (143351)
Román Rossi-Pool (22676681)
dc.date.none.fl_str_mv 2025-11-24T18:33:35Z
dc.identifier.none.fl_str_mv 10.1371/journal.pbio.3003527.g004
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Uniform_Manifold_Approximation_and_Projection_UMAP_-based_sorting_enhances_detection_of_low-firing_rate_neurons_and_boosts_mutual_information_/30697586
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Molecular Biology
Neuroscience
Physiology
Biotechnology
Developmental Biology
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
spike sorting pipelines
spike sorting pipeline
seldom spiking neurons
recorded putative neurons
correctly sorted neurons
clustering algorithms responsible
spike sorting makes
reliable spike sorting
umap drastically increases
data analysis techniques
drastically improve
processed data
experimental data
universal practice
precise explorations
neural recordings
neural code
mathematically grounded
fundamentally motivated
extracellular electrophysiology
enables deeper
crucial step
computational cost
ad hoc
dc.title.none.fl_str_mv Uniform Manifold Approximation and Projection (UMAP)-based sorting enhances detection of low-firing rate neurons and boosts mutual information.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p><b>(A)</b> Cumulative average firing rate distributions for UMAP-based and principal component analysis (PCA)-based spike sorting reveal that UMAP identifies more low-firing neurons, reflecting greater sensitivity to sparse firing. <b>(B)</b> Anatomical maps illustrate three cortical regions: ventral premotor cortex (VPC, green), secondary somatosensory cortex (S2, red), and dorsal prefrontal cortex (DPC, blue). Dotted lines in the lightly shaded oval above S2 indicate recording sites in deeper cortical layers—areas involved in higher-level processing and decision-making. <b>(C–E)</b> Comparisons of PCA and UMAP sorting across these regions. Left: UMAP consistently recovers a larger number of low-firing neurons based on cumulative firing rate distributions: 134 (UMAP) and 60 (PCA) neurons were identified in S2; 228 (UMAP) and 145 (PCA) in VPC; 129 (UMAP) and 96 (PCA) in DPC. Center: It also yields higher overall neuron counts from the same sessions: average number of neuron pairs in S2 from about 4 to almost 10; VPC from about 5 to almost 9; DPC from about 6 to almost 8. Right: UMAP reveals greater mutual information (MI) compared to PCA, indicating stronger information decoding across all brain regions. In summary, UMAP effectively increases neuron recovery, captures low-firing activity, and enhances the information gained from cognitive task data. The neuronal activity recorded during the foreperiod of the cognitive tasks, used for the cumulative distributions, is available at [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref044" target="_blank">44</a>]; the single neurons from different sessions used for the mutual information calculations can be found at [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref043" target="_blank">43</a>]; and the corresponding analysis code is available at [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref049" target="_blank">49</a>].</p>
eu_rights_str_mv openAccess
id Manara_8dbe3b5e70aedc164e8832c44836ea32
identifier_str_mv 10.1371/journal.pbio.3003527.g004
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697586
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Uniform Manifold Approximation and Projection (UMAP)-based sorting enhances detection of low-firing rate neurons and boosts mutual information.Daniel Suárez-Barrera (22676654)Lucas Bayones (22676657)Norberto Encinas-Rodríguez (22676660)Sergio Parra (22676663)Viktor Monroy (22676666)Sebastián Pujalte (22676669)Bernardo Andrade-Ortega (22676672)Héctor Díaz (22676675)Manuel Alvarez (3468647)Antonio Zainos (22676678)Alessio Franci (143351)Román Rossi-Pool (22676681)Cell BiologyMolecular BiologyNeurosciencePhysiologyBiotechnologyDevelopmental BiologyScience PolicySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedspike sorting pipelinesspike sorting pipelineseldom spiking neuronsrecorded putative neuronscorrectly sorted neuronsclustering algorithms responsiblespike sorting makesreliable spike sortingumap drastically increasesdata analysis techniquesdrastically improveprocessed dataexperimental datauniversal practiceprecise explorationsneural recordingsneural codemathematically groundedfundamentally motivatedextracellular electrophysiologyenables deepercrucial stepcomputational costad hoc<p><b>(A)</b> Cumulative average firing rate distributions for UMAP-based and principal component analysis (PCA)-based spike sorting reveal that UMAP identifies more low-firing neurons, reflecting greater sensitivity to sparse firing. <b>(B)</b> Anatomical maps illustrate three cortical regions: ventral premotor cortex (VPC, green), secondary somatosensory cortex (S2, red), and dorsal prefrontal cortex (DPC, blue). Dotted lines in the lightly shaded oval above S2 indicate recording sites in deeper cortical layers—areas involved in higher-level processing and decision-making. <b>(C–E)</b> Comparisons of PCA and UMAP sorting across these regions. Left: UMAP consistently recovers a larger number of low-firing neurons based on cumulative firing rate distributions: 134 (UMAP) and 60 (PCA) neurons were identified in S2; 228 (UMAP) and 145 (PCA) in VPC; 129 (UMAP) and 96 (PCA) in DPC. Center: It also yields higher overall neuron counts from the same sessions: average number of neuron pairs in S2 from about 4 to almost 10; VPC from about 5 to almost 9; DPC from about 6 to almost 8. Right: UMAP reveals greater mutual information (MI) compared to PCA, indicating stronger information decoding across all brain regions. In summary, UMAP effectively increases neuron recovery, captures low-firing activity, and enhances the information gained from cognitive task data. The neuronal activity recorded during the foreperiod of the cognitive tasks, used for the cumulative distributions, is available at [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref044" target="_blank">44</a>]; the single neurons from different sessions used for the mutual information calculations can be found at [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref043" target="_blank">43</a>]; and the corresponding analysis code is available at [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref049" target="_blank">49</a>].</p>2025-11-24T18:33:35ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pbio.3003527.g004https://figshare.com/articles/figure/Uniform_Manifold_Approximation_and_Projection_UMAP_-based_sorting_enhances_detection_of_low-firing_rate_neurons_and_boosts_mutual_information_/30697586CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306975862025-11-24T18:33:35Z
spellingShingle Uniform Manifold Approximation and Projection (UMAP)-based sorting enhances detection of low-firing rate neurons and boosts mutual information.
Daniel Suárez-Barrera (22676654)
Cell Biology
Molecular Biology
Neuroscience
Physiology
Biotechnology
Developmental Biology
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
spike sorting pipelines
spike sorting pipeline
seldom spiking neurons
recorded putative neurons
correctly sorted neurons
clustering algorithms responsible
spike sorting makes
reliable spike sorting
umap drastically increases
data analysis techniques
drastically improve
processed data
experimental data
universal practice
precise explorations
neural recordings
neural code
mathematically grounded
fundamentally motivated
extracellular electrophysiology
enables deeper
crucial step
computational cost
ad hoc
status_str publishedVersion
title Uniform Manifold Approximation and Projection (UMAP)-based sorting enhances detection of low-firing rate neurons and boosts mutual information.
title_full Uniform Manifold Approximation and Projection (UMAP)-based sorting enhances detection of low-firing rate neurons and boosts mutual information.
title_fullStr Uniform Manifold Approximation and Projection (UMAP)-based sorting enhances detection of low-firing rate neurons and boosts mutual information.
title_full_unstemmed Uniform Manifold Approximation and Projection (UMAP)-based sorting enhances detection of low-firing rate neurons and boosts mutual information.
title_short Uniform Manifold Approximation and Projection (UMAP)-based sorting enhances detection of low-firing rate neurons and boosts mutual information.
title_sort Uniform Manifold Approximation and Projection (UMAP)-based sorting enhances detection of low-firing rate neurons and boosts mutual information.
topic Cell Biology
Molecular Biology
Neuroscience
Physiology
Biotechnology
Developmental Biology
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
spike sorting pipelines
spike sorting pipeline
seldom spiking neurons
recorded putative neurons
correctly sorted neurons
clustering algorithms responsible
spike sorting makes
reliable spike sorting
umap drastically increases
data analysis techniques
drastically improve
processed data
experimental data
universal practice
precise explorations
neural recordings
neural code
mathematically grounded
fundamentally motivated
extracellular electrophysiology
enables deeper
crucial step
computational cost
ad hoc