Dual autoencoder with reconstruction-level contrast.

<p>Left: an attributed network <i>G</i> and an augmented view produced by graph data augmentation. Middle: a shared graph-attention encoder yields node embeddings <i>Z</i>, which feed two decoders: a structure decoder reconstructing and an attribute decoder reconstructi...

Cijeli opis

Spremljeno u:
Bibliografski detalji
Glavni autor: Hossein Rafieizadeh (22676722) (author)
Daljnji autori: Hadi Zare (20073000) (author), Mohsen Ghassemi Parsa (22676725) (author), Hocine Cherifi (8177628) (author)
Izdano: 2025
Teme:
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!
Opis
Sažetak:<p>Left: an attributed network <i>G</i> and an augmented view produced by graph data augmentation. Middle: a shared graph-attention encoder yields node embeddings <i>Z</i>, which feed two decoders: a structure decoder reconstructing and an attribute decoder reconstructing for the two views, yielding and . Right: reconstruction-level contrast compares, for each node <i>i</i>, the reconstructions via and ; it minimizes <i>D</i> when and , and enforces a learnable margin <i>m</i> when or . Color coding: green nodes denote non-augmented nodes; red nodes denote augmented nodes; the dotted green arc indicates minimization of <i>D</i>; the dashed orange arc indicates margin enforcement; cross-hatched bars mark augmented features; gray edges are neutral; blue heatmaps depict reconstructed matrices.</p>