UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.

<p>UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.</p>

Bewaard in:
Bibliografische gegevens
Hoofdauteur: Fatemeh Keikha (20917848) (author)
Andere auteurs: Chuanyuan Wang (22676721) (author), Zhixia Yang (3180567) (author), Zhi-Ping Liu (149304) (author)
Gepubliceerd in: 2025
Onderwerpen:
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!
_version_ 1849927641128239104
author Fatemeh Keikha (20917848)
author2 Chuanyuan Wang (22676721)
Zhixia Yang (3180567)
Zhi-Ping Liu (149304)
author2_role author
author
author
author_facet Fatemeh Keikha (20917848)
Chuanyuan Wang (22676721)
Zhixia Yang (3180567)
Zhi-Ping Liu (149304)
author_role author
dc.creator.none.fl_str_mv Fatemeh Keikha (20917848)
Chuanyuan Wang (22676721)
Zhixia Yang (3180567)
Zhi-Ping Liu (149304)
dc.date.none.fl_str_mv 2025-11-24T18:36:29Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013743.s002
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/UMAP_visualizations_of_extracted_CD8_sup_sup_T_and_CD4_sup_sup_T_cell_barcodes_employed_for_downstream_subsequent_single-cell_trajectory_and_classification_analyses_/30697929
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Medicine
Genetics
Biotechnology
Cancer
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
wasserstein optimal transport
real world dataset
quantified via gromov
enhancing diagnostic precision
dynamic network index
deep neural network
ablation studies confirm
regulatory role transitions
gene regulatory networks
combining regulatory rewiring
analyzing disease evolution
temporal expression dynamics
reflect dynamic changes
neglecting structural rewiring
multilayer network models
modeling disease progression
state alignment provides
understanding cancer progression
state graph alignment
disease state classification
state specific biomarkers
disease progression
state alignment
specific expression
multilayer graph
cancer progression
disease state
regulatory variability
regulatory roles
structural shifts
significant changes
prioritized biomarkers
classification accuracy
state single
xlink ">
topological features
synthetic simulated
ranked using
powerful strategy
overall performance
meaningful shifts
gats ),
gastric adenocarcinoma
gac ),
framework designed
findings suggest
dni ),
distinct layer
contextualized embeddings
cell data
dc.title.none.fl_str_mv UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.</p>
eu_rights_str_mv openAccess
id Manara_910e5bc16371bb33b8337429ed9c2b70
identifier_str_mv 10.1371/journal.pcbi.1013743.s002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697929
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.Fatemeh Keikha (20917848)Chuanyuan Wang (22676721)Zhixia Yang (3180567)Zhi-Ping Liu (149304)MedicineGeneticsBiotechnologyCancerInfectious DiseasesBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedwasserstein optimal transportreal world datasetquantified via gromovenhancing diagnostic precisiondynamic network indexdeep neural networkablation studies confirmregulatory role transitionsgene regulatory networkscombining regulatory rewiringanalyzing disease evolutiontemporal expression dynamicsreflect dynamic changesneglecting structural rewiringmultilayer network modelsmodeling disease progressionstate alignment providesunderstanding cancer progressionstate graph alignmentdisease state classificationstate specific biomarkersdisease progressionstate alignmentspecific expressionmultilayer graphcancer progressiondisease stateregulatory variabilityregulatory rolesstructural shiftssignificant changesprioritized biomarkersclassification accuracystate singlexlink ">topological featuressynthetic simulatedranked usingpowerful strategyoverall performancemeaningful shiftsgats ),gastric adenocarcinomagac ),framework designedfindings suggestdni ),distinct layercontextualized embeddingscell data<p>UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.</p>2025-11-24T18:36:29ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pcbi.1013743.s002https://figshare.com/articles/figure/UMAP_visualizations_of_extracted_CD8_sup_sup_T_and_CD4_sup_sup_T_cell_barcodes_employed_for_downstream_subsequent_single-cell_trajectory_and_classification_analyses_/30697929CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306979292025-11-24T18:36:29Z
spellingShingle UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.
Fatemeh Keikha (20917848)
Medicine
Genetics
Biotechnology
Cancer
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
wasserstein optimal transport
real world dataset
quantified via gromov
enhancing diagnostic precision
dynamic network index
deep neural network
ablation studies confirm
regulatory role transitions
gene regulatory networks
combining regulatory rewiring
analyzing disease evolution
temporal expression dynamics
reflect dynamic changes
neglecting structural rewiring
multilayer network models
modeling disease progression
state alignment provides
understanding cancer progression
state graph alignment
disease state classification
state specific biomarkers
disease progression
state alignment
specific expression
multilayer graph
cancer progression
disease state
regulatory variability
regulatory roles
structural shifts
significant changes
prioritized biomarkers
classification accuracy
state single
xlink ">
topological features
synthetic simulated
ranked using
powerful strategy
overall performance
meaningful shifts
gats ),
gastric adenocarcinoma
gac ),
framework designed
findings suggest
dni ),
distinct layer
contextualized embeddings
cell data
status_str publishedVersion
title UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.
title_full UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.
title_fullStr UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.
title_full_unstemmed UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.
title_short UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.
title_sort UMAP visualizations of extracted CD8<sup> + </sup> T and CD4<sup> + </sup> T cell barcodes, employed for downstream subsequent single-cell trajectory and classification analyses.
topic Medicine
Genetics
Biotechnology
Cancer
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
wasserstein optimal transport
real world dataset
quantified via gromov
enhancing diagnostic precision
dynamic network index
deep neural network
ablation studies confirm
regulatory role transitions
gene regulatory networks
combining regulatory rewiring
analyzing disease evolution
temporal expression dynamics
reflect dynamic changes
neglecting structural rewiring
multilayer network models
modeling disease progression
state alignment provides
understanding cancer progression
state graph alignment
disease state classification
state specific biomarkers
disease progression
state alignment
specific expression
multilayer graph
cancer progression
disease state
regulatory variability
regulatory roles
structural shifts
significant changes
prioritized biomarkers
classification accuracy
state single
xlink ">
topological features
synthetic simulated
ranked using
powerful strategy
overall performance
meaningful shifts
gats ),
gastric adenocarcinoma
gac ),
framework designed
findings suggest
dni ),
distinct layer
contextualized embeddings
cell data