Image feature information.

<div><p>The mutation status of isocitrate dehydrogenase1 (IDH1) in glioma is critical information for the diagnosis, treatment, and prognosis. Accurately determining such information from MRI data has emerged as a significant research challenge in recent years. Existing techniques for th...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Fengning Liang (20927493) (author)
مؤلفون آخرون: Yaru Cao (16703550) (author), Teng Zhao (1486717) (author), Qian Xu (119888) (author), Hong Zhu (109912) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:<div><p>The mutation status of isocitrate dehydrogenase1 (IDH1) in glioma is critical information for the diagnosis, treatment, and prognosis. Accurately determining such information from MRI data has emerged as a significant research challenge in recent years. Existing techniques for this problem often suffer from various limitations, such as the data waste and instability issues. To address such issues, we present a semisupervised adaptive deep learning model based on radiomics and rough sets for predicting the mutation status of IDH1 from MRI data. Firstly, our model uses a rough set algorithm to remove the redundant medical image features extracted by radiomics, while adding pseudo-labels for non-labeled data via statistical. T-tests to mitigate the common issue of insufficient datasets in medical imaging analysis. Then, it applies a Sand Cat Swarm Optimization (SCSO) algorithm to optimize the weight of pseudo-label data. Finally, our model adopts U-Net and CRNN to construct UCNet, a semisupervised classification model for classifying IDH1 mutation status. To validate our models, we use a preoperative MRI dataset with 316 glioma patients to evaluate the performance. Our study suggests that the prediction accuracy of glioma IDH1 mutation status reaches 95.63%. Our experimental results suggest that the study can effectively improve the utilization of glioma imaging data and the accuracy of intelligent diagnosis of glioma IDH1 mutation status.</p></div>