DM test results of different models for forecasting.

<p>DM test results of different models for forecasting.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Chengjin Yang (16464079) (author)
مؤلفون آخرون: Yanzhong Zhai (21511941) (author), Zehua Liu (3919058) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852019491059269632
author Chengjin Yang (16464079)
author2 Yanzhong Zhai (21511941)
Zehua Liu (3919058)
author2_role author
author
author_facet Chengjin Yang (16464079)
Yanzhong Zhai (21511941)
Zehua Liu (3919058)
author_role author
dc.creator.none.fl_str_mv Chengjin Yang (16464079)
Yanzhong Zhai (21511941)
Zehua Liu (3919058)
dc.date.none.fl_str_mv 2025-06-09T17:32:11Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0323714.t006
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/DM_test_results_of_different_models_for_forecasting_/29271657
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Biotechnology
Science Policy
Infectious Diseases
Plant Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
sustainable agricultural practices
series denoising method
module wavelet transform
maize price volatility
generate attention vectors
convolutional enhancement network
china &# 8217
key temporal features
input features along
five major corn
corn price forecasting
paper effectively captures
term memory network
term memory capabilities
unique bidirectional structure
corn price data
improve prediction accuracy
accurately predicting short
data fully demonstrate
local features
corn sector
corn prices
prediction accuracy
effectively separating
accurately extracts
term trends
term dependencies
data complexity
bidirectional time
bidirectional processing
xlink ">
trend information
thereby enhancing
signal details
r2 values
producing regions
planting decisions
multiple scales
mse values
mape values
mae values
increase uncertainty
income stability
filter time
factors jeopardize
extensive experimentation
excellent performance
different datasets
dataset utilized
complex dependencies
dc.title.none.fl_str_mv DM test results of different models for forecasting.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>DM test results of different models for forecasting.</p>
eu_rights_str_mv openAccess
id Manara_99e24fa4b9f526edb2140df9ee6bc069
identifier_str_mv 10.1371/journal.pone.0323714.t006
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29271657
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling DM test results of different models for forecasting.Chengjin Yang (16464079)Yanzhong Zhai (21511941)Zehua Liu (3919058)BiochemistryBiotechnologyScience PolicyInfectious DiseasesPlant BiologyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedsustainable agricultural practicesseries denoising methodmodule wavelet transformmaize price volatilitygenerate attention vectorsconvolutional enhancement networkchina &# 8217key temporal featuresinput features alongfive major corncorn price forecastingpaper effectively capturesterm memory networkterm memory capabilitiesunique bidirectional structurecorn price dataimprove prediction accuracyaccurately predicting shortdata fully demonstratelocal featurescorn sectorcorn pricesprediction accuracyeffectively separatingaccurately extractsterm trendsterm dependenciesdata complexitybidirectional timebidirectional processingxlink ">trend informationthereby enhancingsignal detailsr2 valuesproducing regionsplanting decisionsmultiple scalesmse valuesmape valuesmae valuesincrease uncertaintyincome stabilityfilter timefactors jeopardizeextensive experimentationexcellent performancedifferent datasetsdataset utilizedcomplex dependencies<p>DM test results of different models for forecasting.</p>2025-06-09T17:32:11ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0323714.t006https://figshare.com/articles/dataset/DM_test_results_of_different_models_for_forecasting_/29271657CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/292716572025-06-09T17:32:11Z
spellingShingle DM test results of different models for forecasting.
Chengjin Yang (16464079)
Biochemistry
Biotechnology
Science Policy
Infectious Diseases
Plant Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
sustainable agricultural practices
series denoising method
module wavelet transform
maize price volatility
generate attention vectors
convolutional enhancement network
china &# 8217
key temporal features
input features along
five major corn
corn price forecasting
paper effectively captures
term memory network
term memory capabilities
unique bidirectional structure
corn price data
improve prediction accuracy
accurately predicting short
data fully demonstrate
local features
corn sector
corn prices
prediction accuracy
effectively separating
accurately extracts
term trends
term dependencies
data complexity
bidirectional time
bidirectional processing
xlink ">
trend information
thereby enhancing
signal details
r2 values
producing regions
planting decisions
multiple scales
mse values
mape values
mae values
increase uncertainty
income stability
filter time
factors jeopardize
extensive experimentation
excellent performance
different datasets
dataset utilized
complex dependencies
status_str publishedVersion
title DM test results of different models for forecasting.
title_full DM test results of different models for forecasting.
title_fullStr DM test results of different models for forecasting.
title_full_unstemmed DM test results of different models for forecasting.
title_short DM test results of different models for forecasting.
title_sort DM test results of different models for forecasting.
topic Biochemistry
Biotechnology
Science Policy
Infectious Diseases
Plant Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
sustainable agricultural practices
series denoising method
module wavelet transform
maize price volatility
generate attention vectors
convolutional enhancement network
china &# 8217
key temporal features
input features along
five major corn
corn price forecasting
paper effectively captures
term memory network
term memory capabilities
unique bidirectional structure
corn price data
improve prediction accuracy
accurately predicting short
data fully demonstrate
local features
corn sector
corn prices
prediction accuracy
effectively separating
accurately extracts
term trends
term dependencies
data complexity
bidirectional time
bidirectional processing
xlink ">
trend information
thereby enhancing
signal details
r2 values
producing regions
planting decisions
multiple scales
mse values
mape values
mae values
increase uncertainty
income stability
filter time
factors jeopardize
extensive experimentation
excellent performance
different datasets
dataset utilized
complex dependencies