High-frequency broadband (HFB) peak latency timing changes with memory.

<p><b>A.</b> In grey, four sequentially recorded examples of single-trial HFB traces are displayed from a single channel. In black, the same traces are displayed after application of a Gaussian smoothing kernel. The broken vertical red line indicates the behavioral RT of each trial...

Fuld beskrivelse

Saved in:
Bibliografiske detaljer
Hovedforfatter: Adam J. O. Dede (11554007) (author)
Andre forfattere: Zachariah R. Cross (12517201) (author), Samantha M. Gray (15280322) (author), Joseph P. Kelly (22683512) (author), Qin Yin (688027) (author), Parisa Vahidi (6252611) (author), Eishi Asano (10954801) (author), Stephan U. Schuele (8892719) (author), Joshua M. Rosenow (8892722) (author), Joyce Y. Wu (3162564) (author), Sandi K. Lam (10529066) (author), Jeffrey S. Raskin (22683515) (author), Jack J. Lin (7553783) (author), Olivia Kim McManus (22683518) (author), Shifteh Sattar (13215409) (author), Ammar Shaikhouni (5722517) (author), David King-Stephens (22683521) (author), Peter B. Weber (22683524) (author), Kenneth D. Laxer (14948857) (author), Peter Brunner (290008) (author), Jarod L. Roland (9193178) (author), Ignacio Saez (2165584) (author), Fady Girgis (17749833) (author), Robert T. Knight (7108925) (author), Noa Ofen (4059280) (author), Elizabeth L. Johnson (12688232) (author)
Udgivet: 2025
Fag:
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
_version_ 1849927627507236864
author Adam J. O. Dede (11554007)
author2 Zachariah R. Cross (12517201)
Samantha M. Gray (15280322)
Joseph P. Kelly (22683512)
Qin Yin (688027)
Parisa Vahidi (6252611)
Eishi Asano (10954801)
Stephan U. Schuele (8892719)
Joshua M. Rosenow (8892722)
Joyce Y. Wu (3162564)
Sandi K. Lam (10529066)
Jeffrey S. Raskin (22683515)
Jack J. Lin (7553783)
Olivia Kim McManus (22683518)
Shifteh Sattar (13215409)
Ammar Shaikhouni (5722517)
David King-Stephens (22683521)
Peter B. Weber (22683524)
Kenneth D. Laxer (14948857)
Peter Brunner (290008)
Jarod L. Roland (9193178)
Ignacio Saez (2165584)
Fady Girgis (17749833)
Robert T. Knight (7108925)
Noa Ofen (4059280)
Elizabeth L. Johnson (12688232)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author_facet Adam J. O. Dede (11554007)
Zachariah R. Cross (12517201)
Samantha M. Gray (15280322)
Joseph P. Kelly (22683512)
Qin Yin (688027)
Parisa Vahidi (6252611)
Eishi Asano (10954801)
Stephan U. Schuele (8892719)
Joshua M. Rosenow (8892722)
Joyce Y. Wu (3162564)
Sandi K. Lam (10529066)
Jeffrey S. Raskin (22683515)
Jack J. Lin (7553783)
Olivia Kim McManus (22683518)
Shifteh Sattar (13215409)
Ammar Shaikhouni (5722517)
David King-Stephens (22683521)
Peter B. Weber (22683524)
Kenneth D. Laxer (14948857)
Peter Brunner (290008)
Jarod L. Roland (9193178)
Ignacio Saez (2165584)
Fady Girgis (17749833)
Robert T. Knight (7108925)
Noa Ofen (4059280)
Elizabeth L. Johnson (12688232)
author_role author
dc.creator.none.fl_str_mv Adam J. O. Dede (11554007)
Zachariah R. Cross (12517201)
Samantha M. Gray (15280322)
Joseph P. Kelly (22683512)
Qin Yin (688027)
Parisa Vahidi (6252611)
Eishi Asano (10954801)
Stephan U. Schuele (8892719)
Joshua M. Rosenow (8892722)
Joyce Y. Wu (3162564)
Sandi K. Lam (10529066)
Jeffrey S. Raskin (22683515)
Jack J. Lin (7553783)
Olivia Kim McManus (22683518)
Shifteh Sattar (13215409)
Ammar Shaikhouni (5722517)
David King-Stephens (22683521)
Peter B. Weber (22683524)
Kenneth D. Laxer (14948857)
Peter Brunner (290008)
Jarod L. Roland (9193178)
Ignacio Saez (2165584)
Fady Girgis (17749833)
Robert T. Knight (7108925)
Noa Ofen (4059280)
Elizabeth L. Johnson (12688232)
dc.date.none.fl_str_mv 2025-11-25T18:34:35Z
dc.identifier.none.fl_str_mv 10.1371/journal.pbio.3003481.g002
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/High-frequency_broadband_HFB_peak_latency_timing_changes_with_memory_/30714392
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Neuroscience
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
using intracranial eeg
recognition memory task
graph theoretic analysis
sparse network states
direct stimulus processing
sparse connectivity aligned
external stimulus presentation
internal pfc peaks
internal hfb peaks
mtl theta connectivity
stimulus presentation
local processing
generated states
external event
theta oscillations
pfc changed
patients performing
global organization
frequency broadband
contrasting analyses
anchored either
analyses triggered
dc.title.none.fl_str_mv High-frequency broadband (HFB) peak latency timing changes with memory.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p><b>A.</b> In grey, four sequentially recorded examples of single-trial HFB traces are displayed from a single channel. In black, the same traces are displayed after application of a Gaussian smoothing kernel. The broken vertical red line indicates the behavioral RT of each trial. The dashed vertical black line indicates image onset. The green dots indicate the peak HFB activity on each trial. Note the lack of consistency in peak latency. This panel can be regenerated using data contained in HFB_singleTrialmtl_sub_image.mat and code in Figure1C_2A.m [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003481#pbio.3003481.ref112" target="_blank">112</a>]. <b>B.</b> The heatmap displays single-trial HFB time series from channels in the hippocampus during subsequent hit trials. Trials have been sorted by latency of the peak HFB power. White dots indicate the behavioral RT of each trial, which was a poor predictor of the latency of the HFB power peak. This panel can be regenerated using data contained in HFB_singleTrialmtl_sub_image.mat and code in Figure2B.m [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003481#pbio.3003481.ref112" target="_blank">112</a>]. <b>C.</b> Each cumulative distribution plot displays the timing of the latency of peak HFB activity across all trials for subsequent hits (top left), subsequent misses (top right), retrieval hits (bottom left), and retrieval misses (bottom right). Each region’s trial distribution is shown with a different line. Because different numbers of trials were observed in different behavioral conditions and for different regions, trial is plotted as a percentile of trials on the <i>y</i>-axis. Because reaction times were variable between individuals and conditions, time is plotted on the <i>x</i>-axis as a proportion of time such that 0 is image onset and 1.0 is behavioral response. This panel can be regenerated using data contained in the HFB_singleTrial folder and code in Figure2C.m [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003481#pbio.3003481.ref112" target="_blank">112</a>]. <b>D.</b> Each grouped scatter plot displays the mean time of peak HFB latency for each channel grouped by region. Time relative to image onset is displayed as a proportion on the <i>y</i>-axis. Error bars display the 83% confidence interval around model estimates [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003481#pbio.3003481.ref113" target="_blank">113</a>,<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003481#pbio.3003481.ref114" target="_blank">114</a>]. For example, note that while the hippocampus (light blue) and parahippocampal gyrus (red) led the dlPFC and pPFC during successful encoding, these PFC regions were active simultaneously with the Hip during successful retrieval. This panel can be regenerated using data contained in trialLatDat_RTfix.csv and code in Latency_LME_modeling.Rmd [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003481#pbio.3003481.ref112" target="_blank">112</a>].</p>
eu_rights_str_mv openAccess
id Manara_a65c1295b5b0c8b1f37ca53a6cec1979
identifier_str_mv 10.1371/journal.pbio.3003481.g002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30714392
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling High-frequency broadband (HFB) peak latency timing changes with memory.Adam J. O. Dede (11554007)Zachariah R. Cross (12517201)Samantha M. Gray (15280322)Joseph P. Kelly (22683512)Qin Yin (688027)Parisa Vahidi (6252611)Eishi Asano (10954801)Stephan U. Schuele (8892719)Joshua M. Rosenow (8892722)Joyce Y. Wu (3162564)Sandi K. Lam (10529066)Jeffrey S. Raskin (22683515)Jack J. Lin (7553783)Olivia Kim McManus (22683518)Shifteh Sattar (13215409)Ammar Shaikhouni (5722517)David King-Stephens (22683521)Peter B. Weber (22683524)Kenneth D. Laxer (14948857)Peter Brunner (290008)Jarod L. Roland (9193178)Ignacio Saez (2165584)Fady Girgis (17749833)Robert T. Knight (7108925)Noa Ofen (4059280)Elizabeth L. Johnson (12688232)Cell BiologyNeuroscienceEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedusing intracranial eegrecognition memory taskgraph theoretic analysissparse network statesdirect stimulus processingsparse connectivity alignedexternal stimulus presentationinternal pfc peaksinternal hfb peaksmtl theta connectivitystimulus presentationlocal processinggenerated statesexternal eventtheta oscillationspfc changedpatients performingglobal organizationfrequency broadbandcontrasting analysesanchored eitheranalyses triggered<p><b>A.</b> In grey, four sequentially recorded examples of single-trial HFB traces are displayed from a single channel. In black, the same traces are displayed after application of a Gaussian smoothing kernel. The broken vertical red line indicates the behavioral RT of each trial. The dashed vertical black line indicates image onset. The green dots indicate the peak HFB activity on each trial. Note the lack of consistency in peak latency. This panel can be regenerated using data contained in HFB_singleTrialmtl_sub_image.mat and code in Figure1C_2A.m [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003481#pbio.3003481.ref112" target="_blank">112</a>]. <b>B.</b> The heatmap displays single-trial HFB time series from channels in the hippocampus during subsequent hit trials. Trials have been sorted by latency of the peak HFB power. White dots indicate the behavioral RT of each trial, which was a poor predictor of the latency of the HFB power peak. This panel can be regenerated using data contained in HFB_singleTrialmtl_sub_image.mat and code in Figure2B.m [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003481#pbio.3003481.ref112" target="_blank">112</a>]. <b>C.</b> Each cumulative distribution plot displays the timing of the latency of peak HFB activity across all trials for subsequent hits (top left), subsequent misses (top right), retrieval hits (bottom left), and retrieval misses (bottom right). Each region’s trial distribution is shown with a different line. Because different numbers of trials were observed in different behavioral conditions and for different regions, trial is plotted as a percentile of trials on the <i>y</i>-axis. Because reaction times were variable between individuals and conditions, time is plotted on the <i>x</i>-axis as a proportion of time such that 0 is image onset and 1.0 is behavioral response. This panel can be regenerated using data contained in the HFB_singleTrial folder and code in Figure2C.m [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003481#pbio.3003481.ref112" target="_blank">112</a>]. <b>D.</b> Each grouped scatter plot displays the mean time of peak HFB latency for each channel grouped by region. Time relative to image onset is displayed as a proportion on the <i>y</i>-axis. Error bars display the 83% confidence interval around model estimates [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003481#pbio.3003481.ref113" target="_blank">113</a>,<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003481#pbio.3003481.ref114" target="_blank">114</a>]. For example, note that while the hippocampus (light blue) and parahippocampal gyrus (red) led the dlPFC and pPFC during successful encoding, these PFC regions were active simultaneously with the Hip during successful retrieval. This panel can be regenerated using data contained in trialLatDat_RTfix.csv and code in Latency_LME_modeling.Rmd [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003481#pbio.3003481.ref112" target="_blank">112</a>].</p>2025-11-25T18:34:35ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pbio.3003481.g002https://figshare.com/articles/figure/High-frequency_broadband_HFB_peak_latency_timing_changes_with_memory_/30714392CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307143922025-11-25T18:34:35Z
spellingShingle High-frequency broadband (HFB) peak latency timing changes with memory.
Adam J. O. Dede (11554007)
Cell Biology
Neuroscience
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
using intracranial eeg
recognition memory task
graph theoretic analysis
sparse network states
direct stimulus processing
sparse connectivity aligned
external stimulus presentation
internal pfc peaks
internal hfb peaks
mtl theta connectivity
stimulus presentation
local processing
generated states
external event
theta oscillations
pfc changed
patients performing
global organization
frequency broadband
contrasting analyses
anchored either
analyses triggered
status_str publishedVersion
title High-frequency broadband (HFB) peak latency timing changes with memory.
title_full High-frequency broadband (HFB) peak latency timing changes with memory.
title_fullStr High-frequency broadband (HFB) peak latency timing changes with memory.
title_full_unstemmed High-frequency broadband (HFB) peak latency timing changes with memory.
title_short High-frequency broadband (HFB) peak latency timing changes with memory.
title_sort High-frequency broadband (HFB) peak latency timing changes with memory.
topic Cell Biology
Neuroscience
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
using intracranial eeg
recognition memory task
graph theoretic analysis
sparse network states
direct stimulus processing
sparse connectivity aligned
external stimulus presentation
internal pfc peaks
internal hfb peaks
mtl theta connectivity
stimulus presentation
local processing
generated states
external event
theta oscillations
pfc changed
patients performing
global organization
frequency broadband
contrasting analyses
anchored either
analyses triggered