Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from free-text reports within the Wildbase Pathology Register of Aotearoa New Zealand.

<p>Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from f...

詳細記述

保存先:
書誌詳細
第一著者: Stefan Saverimuttu (20882325) (author)
その他の著者: Kate McInnes (7520158) (author), Kristin Warren (3339657) (author), Lian Yeap (21221659) (author), Stuart Hunter (2498485) (author), Brett Gartrell (6325817) (author), An Pas (12001965) (author), James Chatterton (20347204) (author), Bethany Jackson (3339660) (author)
出版事項: 2025
主題:
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
_version_ 1849927628030476288
author Stefan Saverimuttu (20882325)
author2 Kate McInnes (7520158)
Kristin Warren (3339657)
Lian Yeap (21221659)
Stuart Hunter (2498485)
Brett Gartrell (6325817)
An Pas (12001965)
James Chatterton (20347204)
Bethany Jackson (3339660)
author2_role author
author
author
author
author
author
author
author
author_facet Stefan Saverimuttu (20882325)
Kate McInnes (7520158)
Kristin Warren (3339657)
Lian Yeap (21221659)
Stuart Hunter (2498485)
Brett Gartrell (6325817)
An Pas (12001965)
James Chatterton (20347204)
Bethany Jackson (3339660)
author_role author
dc.creator.none.fl_str_mv Stefan Saverimuttu (20882325)
Kate McInnes (7520158)
Kristin Warren (3339657)
Lian Yeap (21221659)
Stuart Hunter (2498485)
Brett Gartrell (6325817)
An Pas (12001965)
James Chatterton (20347204)
Bethany Jackson (3339660)
dc.date.none.fl_str_mv 2025-11-25T18:30:47Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0337720.t003
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Quantification_of_misclassification_categorisation_Misclassification_categories_quantified_across_all_testers_and_clinicopathologic_findings_for_false_positives_and_false_negatives_in_a_pilot_test_of_the_text-mining_application_DEE_designed/30714059
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Ecology
Information Systems not elsewhere classified
wildlife necropsy data
wildbase pathology register
study evaluates part
score &# 8212
pilot study highlights
one health objectives
limited terminological variance
examine ), designed
driven misclassification patterns
consuming process poses
analysed alongside tester
63 &# 8211
terminological variance may
efficiently derive insights
text clinical data
search term selection
efficient data retrieval
four clinicopathologic findings
highest performance scores
scores across
knowledge retrieval
extracting insights
efficient utilisation
clinicopathologic finding
tested findings
findings reveal
findings characterized
xlink ">
valuable resources
results highlight
relatively simple
rapid analysis
principals underlying
mining approaches
mining application
may describe
manual review
external oiling
diphtheritic stomatitis
broader implementation
bespoke text
based text
automatically capture
application testers
advancing conservation
dc.title.none.fl_str_mv Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from free-text reports within the Wildbase Pathology Register of Aotearoa New Zealand.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from free-text reports within the Wildbase Pathology Register of Aotearoa New Zealand.</p>
eu_rights_str_mv openAccess
id Manara_a873f42ebd4ee74b9c6d245828e16fde
identifier_str_mv 10.1371/journal.pone.0337720.t003
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30714059
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from free-text reports within the Wildbase Pathology Register of Aotearoa New Zealand.Stefan Saverimuttu (20882325)Kate McInnes (7520158)Kristin Warren (3339657)Lian Yeap (21221659)Stuart Hunter (2498485)Brett Gartrell (6325817)An Pas (12001965)James Chatterton (20347204)Bethany Jackson (3339660)EcologyInformation Systems not elsewhere classifiedwildlife necropsy datawildbase pathology registerstudy evaluates partscore &# 8212pilot study highlightsone health objectiveslimited terminological varianceexamine ), designeddriven misclassification patternsconsuming process posesanalysed alongside tester63 &# 8211terminological variance mayefficiently derive insightstext clinical datasearch term selectionefficient data retrievalfour clinicopathologic findingshighest performance scoresscores acrossknowledge retrievalextracting insightsefficient utilisationclinicopathologic findingtested findingsfindings revealfindings characterizedxlink ">valuable resourcesresults highlightrelatively simplerapid analysisprincipals underlyingmining approachesmining applicationmay describemanual reviewexternal oilingdiphtheritic stomatitisbroader implementationbespoke textbased textautomatically captureapplication testersadvancing conservation<p>Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from free-text reports within the Wildbase Pathology Register of Aotearoa New Zealand.</p>2025-11-25T18:30:47ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0337720.t003https://figshare.com/articles/dataset/Quantification_of_misclassification_categorisation_Misclassification_categories_quantified_across_all_testers_and_clinicopathologic_findings_for_false_positives_and_false_negatives_in_a_pilot_test_of_the_text-mining_application_DEE_designed/30714059CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307140592025-11-25T18:30:47Z
spellingShingle Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from free-text reports within the Wildbase Pathology Register of Aotearoa New Zealand.
Stefan Saverimuttu (20882325)
Ecology
Information Systems not elsewhere classified
wildlife necropsy data
wildbase pathology register
study evaluates part
score &# 8212
pilot study highlights
one health objectives
limited terminological variance
examine ), designed
driven misclassification patterns
consuming process poses
analysed alongside tester
63 &# 8211
terminological variance may
efficiently derive insights
text clinical data
search term selection
efficient data retrieval
four clinicopathologic findings
highest performance scores
scores across
knowledge retrieval
extracting insights
efficient utilisation
clinicopathologic finding
tested findings
findings reveal
findings characterized
xlink ">
valuable resources
results highlight
relatively simple
rapid analysis
principals underlying
mining approaches
mining application
may describe
manual review
external oiling
diphtheritic stomatitis
broader implementation
bespoke text
based text
automatically capture
application testers
advancing conservation
status_str publishedVersion
title Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from free-text reports within the Wildbase Pathology Register of Aotearoa New Zealand.
title_full Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from free-text reports within the Wildbase Pathology Register of Aotearoa New Zealand.
title_fullStr Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from free-text reports within the Wildbase Pathology Register of Aotearoa New Zealand.
title_full_unstemmed Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from free-text reports within the Wildbase Pathology Register of Aotearoa New Zealand.
title_short Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from free-text reports within the Wildbase Pathology Register of Aotearoa New Zealand.
title_sort Quantification of misclassification categorisation. Misclassification categories quantified across all testers and clinicopathologic findings for false positives and false negatives in a pilot test of the text-mining application; DEE, designed for the rapid retrieval of necropsy data from free-text reports within the Wildbase Pathology Register of Aotearoa New Zealand.
topic Ecology
Information Systems not elsewhere classified
wildlife necropsy data
wildbase pathology register
study evaluates part
score &# 8212
pilot study highlights
one health objectives
limited terminological variance
examine ), designed
driven misclassification patterns
consuming process poses
analysed alongside tester
63 &# 8211
terminological variance may
efficiently derive insights
text clinical data
search term selection
efficient data retrieval
four clinicopathologic findings
highest performance scores
scores across
knowledge retrieval
extracting insights
efficient utilisation
clinicopathologic finding
tested findings
findings reveal
findings characterized
xlink ">
valuable resources
results highlight
relatively simple
rapid analysis
principals underlying
mining approaches
mining application
may describe
manual review
external oiling
diphtheritic stomatitis
broader implementation
bespoke text
based text
automatically capture
application testers
advancing conservation