AlexNet training hyperparameters.
<div><p>Seismic impedance inversion is a geophysical technique that transforms seismic data into quantitative subsurface properties, primarily acoustic impedance. This process enables the identification of rock boundaries, hydrocarbon reservoirs, and lithological variations, thus support...
Saved in:
| 主要作者: | |
|---|---|
| 其他作者: | , |
| 出版: |
2025
|
| 主题: | |
| 标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
| 总结: | <div><p>Seismic impedance inversion is a geophysical technique that transforms seismic data into quantitative subsurface properties, primarily acoustic impedance. This process enables the identification of rock boundaries, hydrocarbon reservoirs, and lithological variations, thus supporting informed drilling decisions and reducing exploration risks. However, conventional inversion methods face limitations such as noise sensitivity, low resolution, and reduced effectiveness in geologically complex areas, often resulting in oversimplified subsurface models. This study addresses these challenges by employing deep learning approaches, specifically LeNet, AlexNet, and conventional CNN architectures, to improve seismic resolution and synthetic seismogram generation. The methodology involves preprocessing seismic and well-log data, calculating acoustic impedance and reflection coefficients, and applying Continuous Wavelet Transform (CWT) for feature extraction. The models are trained using synthetic seismograms and validated against real seismic data. Among the models evaluated, AlexNet demonstrates superior performance in seismic data reconstruction, achieving the lowest MSE (0.0031), RMSE (0.0557), and MAE (0.052), along with the highest R2 score (0.993). The proposed technique demonstrates superior predictive accuracy, refined subsurface characterization, and reduced geological risk, thereby establishing a robust benchmark for advanced geophysical data analysis.</p></div> |
|---|