_version_ 1852025025647869952
author Hong-Jie Liang (11495982)
author2 Ling-Long Li (20308164)
Guang-Zhong Cao (6444716)
author2_role author
author
author_facet Hong-Jie Liang (11495982)
Ling-Long Li (20308164)
Guang-Zhong Cao (6444716)
author_role author
dc.creator.none.fl_str_mv Hong-Jie Liang (11495982)
Ling-Long Li (20308164)
Guang-Zhong Cao (6444716)
dc.date.none.fl_str_mv 2024-11-21T18:27:31Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0309706.g006
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/T-SNE_result_in_the_BCI-C_IV_2a_dataset_/27881547
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Physiology
Biotechnology
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
utilizing offset parameters
two public datasets
mi )- electroencephalography
diverse receptive fields
deformable convolutional network
continuous time scales
computed multiple times
utilizes convolution kernels
dimensional convolution layer
deformable convolution network
convolution kernel size
temporal feature extraction
model &# 8217
classification accuracy obtained
extracting frequency information
crop classification module
original eeg data
frequency enhancement module
dilated convolution
frequency enhancement
crop module
temporal domain
eeg data
channel information
baseline model
utilization efficiency
spatial domain
important role
enables motor
eeg decoding
disabled patients
deep learning
decoding plays
computer interface
calculating attention
bci ),
art methods
ablation study
dc.title.none.fl_str_mv T-SNE result in the BCI-C IV 2a dataset.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The selected subjects of the BCI-C IV 2a dataset are subject 3 and subject 7.</p>
eu_rights_str_mv openAccess
id Manara_a8a809fbb6dec4df7c8582a3932fffe5
identifier_str_mv 10.1371/journal.pone.0309706.g006
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/27881547
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling T-SNE result in the BCI-C IV 2a dataset.Hong-Jie Liang (11495982)Ling-Long Li (20308164)Guang-Zhong Cao (6444716)PhysiologyBiotechnologySpace ScienceBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedutilizing offset parameterstwo public datasetsmi )- electroencephalographydiverse receptive fieldsdeformable convolutional networkcontinuous time scalescomputed multiple timesutilizes convolution kernelsdimensional convolution layerdeformable convolution networkconvolution kernel sizetemporal feature extractionmodel &# 8217classification accuracy obtainedextracting frequency informationcrop classification moduleoriginal eeg datafrequency enhancement moduledilated convolutionfrequency enhancementcrop moduletemporal domaineeg datachannel informationbaseline modelutilization efficiencyspatial domainimportant roleenables motoreeg decodingdisabled patientsdeep learningdecoding playscomputer interfacecalculating attentionbci ),art methodsablation study<p>The selected subjects of the BCI-C IV 2a dataset are subject 3 and subject 7.</p>2024-11-21T18:27:31ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0309706.g006https://figshare.com/articles/figure/T-SNE_result_in_the_BCI-C_IV_2a_dataset_/27881547CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/278815472024-11-21T18:27:31Z
spellingShingle T-SNE result in the BCI-C IV 2a dataset.
Hong-Jie Liang (11495982)
Physiology
Biotechnology
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
utilizing offset parameters
two public datasets
mi )- electroencephalography
diverse receptive fields
deformable convolutional network
continuous time scales
computed multiple times
utilizes convolution kernels
dimensional convolution layer
deformable convolution network
convolution kernel size
temporal feature extraction
model &# 8217
classification accuracy obtained
extracting frequency information
crop classification module
original eeg data
frequency enhancement module
dilated convolution
frequency enhancement
crop module
temporal domain
eeg data
channel information
baseline model
utilization efficiency
spatial domain
important role
enables motor
eeg decoding
disabled patients
deep learning
decoding plays
computer interface
calculating attention
bci ),
art methods
ablation study
status_str publishedVersion
title T-SNE result in the BCI-C IV 2a dataset.
title_full T-SNE result in the BCI-C IV 2a dataset.
title_fullStr T-SNE result in the BCI-C IV 2a dataset.
title_full_unstemmed T-SNE result in the BCI-C IV 2a dataset.
title_short T-SNE result in the BCI-C IV 2a dataset.
title_sort T-SNE result in the BCI-C IV 2a dataset.
topic Physiology
Biotechnology
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
utilizing offset parameters
two public datasets
mi )- electroencephalography
diverse receptive fields
deformable convolutional network
continuous time scales
computed multiple times
utilizes convolution kernels
dimensional convolution layer
deformable convolution network
convolution kernel size
temporal feature extraction
model &# 8217
classification accuracy obtained
extracting frequency information
crop classification module
original eeg data
frequency enhancement module
dilated convolution
frequency enhancement
crop module
temporal domain
eeg data
channel information
baseline model
utilization efficiency
spatial domain
important role
enables motor
eeg decoding
disabled patients
deep learning
decoding plays
computer interface
calculating attention
bci ),
art methods
ablation study