Graphical Abstract.

<p>The first box shows how the COPD and the Differential partial correlation networks have been built. Given a source of biological information, such as a PPI network or set of functional annotations, for every gene i and j (g<sub>i</sub>,g<sub>j</sub>) we extract the g...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Michele Gentili (19865208) (author)
مؤلفون آخرون: Kimberly Glass (416881) (author), Enrico Maiorino (6956657) (author), Brian D. Hobbs (5118383) (author), Zhonghui Xu (659900) (author), Peter J. Castaldi (8788598) (author), Michael H. Cho (6856079) (author), Craig P. Hersh (8543712) (author), Dandi Qiao (5118380) (author), Jarrett D. Morrow (3082395) (author), Vincent J. Carey (19865211) (author), John Platig (3115692) (author), Edwin K. Silverman (6856082) (author)
منشور في: 2024
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852025871933636608
author Michele Gentili (19865208)
author2 Kimberly Glass (416881)
Enrico Maiorino (6956657)
Brian D. Hobbs (5118383)
Zhonghui Xu (659900)
Peter J. Castaldi (8788598)
Michael H. Cho (6856079)
Craig P. Hersh (8543712)
Dandi Qiao (5118380)
Jarrett D. Morrow (3082395)
Vincent J. Carey (19865211)
John Platig (3115692)
Edwin K. Silverman (6856082)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author_facet Michele Gentili (19865208)
Kimberly Glass (416881)
Enrico Maiorino (6956657)
Brian D. Hobbs (5118383)
Zhonghui Xu (659900)
Peter J. Castaldi (8788598)
Michael H. Cho (6856079)
Craig P. Hersh (8543712)
Dandi Qiao (5118380)
Jarrett D. Morrow (3082395)
Vincent J. Carey (19865211)
John Platig (3115692)
Edwin K. Silverman (6856082)
author_role author
dc.creator.none.fl_str_mv Michele Gentili (19865208)
Kimberly Glass (416881)
Enrico Maiorino (6956657)
Brian D. Hobbs (5118383)
Zhonghui Xu (659900)
Peter J. Castaldi (8788598)
Michael H. Cho (6856079)
Craig P. Hersh (8543712)
Dandi Qiao (5118380)
Jarrett D. Morrow (3082395)
Vincent J. Carey (19865211)
John Platig (3115692)
Edwin K. Silverman (6856082)
dc.date.none.fl_str_mv 2024-10-17T17:37:51Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1011079.g002
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Graphical_Abstract_/27251460
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Microbiology
Cell Biology
Genetics
Molecular Biology
Science Policy
Biological Sciences not elsewhere classified
established environmental exposures
complex disease influenced
(~ 70mb ),
4q region bounded
identified several co
copd genetic susceptibility
partial correlations informed
including signals near
div >< p
genes differentially co
copd vs controls
partial correlations
region enriched
genomic region
differential co
copd genome
copd cases
upon clustering
tet2 </
tet2 )</
spp1 </
seq data
regional cluster
previously implicated
ppm1k </
ppa2 </
lung tissue
leveraging rna
hhip </
gstcd </
fam13a </
cigarette smoking
btc </
based knock
dc.title.none.fl_str_mv Graphical Abstract.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The first box shows how the COPD and the Differential partial correlation networks have been built. Given a source of biological information, such as a PPI network or set of functional annotations, for every gene i and j (g<sub>i</sub>,g<sub>j</sub>) we extract the gene specific regularization vector <i>λ</i><sub><i>i</i>,<i>j</i></sub>, that contains the distance between gene g<sub>i</sub> and g<sub>j</sub> to all of the other genes, in our case the inverse of the personalized PageRank algorithm (more details in <b><a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1011079#pcbi.1011079.s001" target="_blank">S1 Text</a></b>). For every pair of genes (g<sub>i</sub>,g<sub>j</sub>), we compute the Gene-Specific Ridge Partial Correlation. Finally, to build the partial correlation network we run a t-test, using permutation and bootstrap procedures, respectively. The second box contains the analysis done on the two networks from (1) the COPD subjects and (2) a differential network of COPD patients vs Healthy controls. Both analyses provide insights into the presence of a potential co-regulatory network in this genomic region.</p>
eu_rights_str_mv openAccess
id Manara_aafff72fcd8aecde1a03a5c5b080a7ac
identifier_str_mv 10.1371/journal.pcbi.1011079.g002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/27251460
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Graphical Abstract.Michele Gentili (19865208)Kimberly Glass (416881)Enrico Maiorino (6956657)Brian D. Hobbs (5118383)Zhonghui Xu (659900)Peter J. Castaldi (8788598)Michael H. Cho (6856079)Craig P. Hersh (8543712)Dandi Qiao (5118380)Jarrett D. Morrow (3082395)Vincent J. Carey (19865211)John Platig (3115692)Edwin K. Silverman (6856082)MicrobiologyCell BiologyGeneticsMolecular BiologyScience PolicyBiological Sciences not elsewhere classifiedestablished environmental exposurescomplex disease influenced(~ 70mb ),4q region boundedidentified several cocopd genetic susceptibilitypartial correlations informedincluding signals neardiv >< pgenes differentially cocopd vs controlspartial correlationsregion enrichedgenomic regiondifferential cocopd genomecopd casesupon clusteringtet2 </tet2 )</spp1 </seq dataregional clusterpreviously implicatedppm1k </ppa2 </lung tissueleveraging rnahhip </gstcd </fam13a </cigarette smokingbtc </based knock<p>The first box shows how the COPD and the Differential partial correlation networks have been built. Given a source of biological information, such as a PPI network or set of functional annotations, for every gene i and j (g<sub>i</sub>,g<sub>j</sub>) we extract the gene specific regularization vector <i>λ</i><sub><i>i</i>,<i>j</i></sub>, that contains the distance between gene g<sub>i</sub> and g<sub>j</sub> to all of the other genes, in our case the inverse of the personalized PageRank algorithm (more details in <b><a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1011079#pcbi.1011079.s001" target="_blank">S1 Text</a></b>). For every pair of genes (g<sub>i</sub>,g<sub>j</sub>), we compute the Gene-Specific Ridge Partial Correlation. Finally, to build the partial correlation network we run a t-test, using permutation and bootstrap procedures, respectively. The second box contains the analysis done on the two networks from (1) the COPD subjects and (2) a differential network of COPD patients vs Healthy controls. Both analyses provide insights into the presence of a potential co-regulatory network in this genomic region.</p>2024-10-17T17:37:51ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pcbi.1011079.g002https://figshare.com/articles/figure/Graphical_Abstract_/27251460CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/272514602024-10-17T17:37:51Z
spellingShingle Graphical Abstract.
Michele Gentili (19865208)
Microbiology
Cell Biology
Genetics
Molecular Biology
Science Policy
Biological Sciences not elsewhere classified
established environmental exposures
complex disease influenced
(~ 70mb ),
4q region bounded
identified several co
copd genetic susceptibility
partial correlations informed
including signals near
div >< p
genes differentially co
copd vs controls
partial correlations
region enriched
genomic region
differential co
copd genome
copd cases
upon clustering
tet2 </
tet2 )</
spp1 </
seq data
regional cluster
previously implicated
ppm1k </
ppa2 </
lung tissue
leveraging rna
hhip </
gstcd </
fam13a </
cigarette smoking
btc </
based knock
status_str publishedVersion
title Graphical Abstract.
title_full Graphical Abstract.
title_fullStr Graphical Abstract.
title_full_unstemmed Graphical Abstract.
title_short Graphical Abstract.
title_sort Graphical Abstract.
topic Microbiology
Cell Biology
Genetics
Molecular Biology
Science Policy
Biological Sciences not elsewhere classified
established environmental exposures
complex disease influenced
(~ 70mb ),
4q region bounded
identified several co
copd genetic susceptibility
partial correlations informed
including signals near
div >< p
genes differentially co
copd vs controls
partial correlations
region enriched
genomic region
differential co
copd genome
copd cases
upon clustering
tet2 </
tet2 )</
spp1 </
seq data
regional cluster
previously implicated
ppm1k </
ppa2 </
lung tissue
leveraging rna
hhip </
gstcd </
fam13a </
cigarette smoking
btc </
based knock