_version_ 1852015875813539840
author Hasan Raza Khanzada (22404835)
author2 Adnan Maqsood (22404838)
Abdul Basit (174463)
author2_role author
author
author_facet Hasan Raza Khanzada (22404835)
Adnan Maqsood (22404838)
Abdul Basit (174463)
author_role author
dc.creator.none.fl_str_mv Hasan Raza Khanzada (22404835)
Adnan Maqsood (22404838)
Abdul Basit (174463)
dc.date.none.fl_str_mv 2025-10-09T20:08:09Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0334219.g025
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Comparison_of_RL_agent_and_PID_response_for_heading_controller_/30324100
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Biotechnology
Ecology
Inorganic Chemistry
Science Policy
Biological Sciences not elsewhere classified
critical gap persists
classical pid controllers
3 %, offering
varying flight conditions
suitable rl algorithm
space rl algorithms
rl algorithms outperformed
provide valuable insight
comparative analysis reveals
uav flight controls
evaluated rl algorithms
comparative analysis
flight control
rl agents
rl ).
analysis aims
wing uavs
wind gusts
uncertain environments
uavs ).
state error
soft actor
rigorous evaluation
results demonstrate
relative strengths
reinforcement learning
recent studies
paper aims
major shift
leading continuous
environmental disturbances
deliver robust
control pitch
best trade
400 episodes
dc.title.none.fl_str_mv Comparison of RL agent and PID response for heading controller.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Comparison of RL agent and PID response for heading controller.</p>
eu_rights_str_mv openAccess
id Manara_abb541cac99bfaf16a3ba418cdbd6ffd
identifier_str_mv 10.1371/journal.pone.0334219.g025
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30324100
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Comparison of RL agent and PID response for heading controller.Hasan Raza Khanzada (22404835)Adnan Maqsood (22404838)Abdul Basit (174463)Cell BiologyBiotechnologyEcologyInorganic ChemistryScience PolicyBiological Sciences not elsewhere classifiedcritical gap persistsclassical pid controllers3 %, offeringvarying flight conditionssuitable rl algorithmspace rl algorithmsrl algorithms outperformedprovide valuable insightcomparative analysis revealsuav flight controlsevaluated rl algorithmscomparative analysisflight controlrl agentsrl ).analysis aimswing uavswind gustsuncertain environmentsuavs ).state errorsoft actorrigorous evaluationresults demonstraterelative strengthsreinforcement learningrecent studiespaper aimsmajor shiftleading continuousenvironmental disturbancesdeliver robustcontrol pitchbest trade400 episodes<p>Comparison of RL agent and PID response for heading controller.</p>2025-10-09T20:08:09ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0334219.g025https://figshare.com/articles/figure/Comparison_of_RL_agent_and_PID_response_for_heading_controller_/30324100CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/303241002025-10-09T20:08:09Z
spellingShingle Comparison of RL agent and PID response for heading controller.
Hasan Raza Khanzada (22404835)
Cell Biology
Biotechnology
Ecology
Inorganic Chemistry
Science Policy
Biological Sciences not elsewhere classified
critical gap persists
classical pid controllers
3 %, offering
varying flight conditions
suitable rl algorithm
space rl algorithms
rl algorithms outperformed
provide valuable insight
comparative analysis reveals
uav flight controls
evaluated rl algorithms
comparative analysis
flight control
rl agents
rl ).
analysis aims
wing uavs
wind gusts
uncertain environments
uavs ).
state error
soft actor
rigorous evaluation
results demonstrate
relative strengths
reinforcement learning
recent studies
paper aims
major shift
leading continuous
environmental disturbances
deliver robust
control pitch
best trade
400 episodes
status_str publishedVersion
title Comparison of RL agent and PID response for heading controller.
title_full Comparison of RL agent and PID response for heading controller.
title_fullStr Comparison of RL agent and PID response for heading controller.
title_full_unstemmed Comparison of RL agent and PID response for heading controller.
title_short Comparison of RL agent and PID response for heading controller.
title_sort Comparison of RL agent and PID response for heading controller.
topic Cell Biology
Biotechnology
Ecology
Inorganic Chemistry
Science Policy
Biological Sciences not elsewhere classified
critical gap persists
classical pid controllers
3 %, offering
varying flight conditions
suitable rl algorithm
space rl algorithms
rl algorithms outperformed
provide valuable insight
comparative analysis reveals
uav flight controls
evaluated rl algorithms
comparative analysis
flight control
rl agents
rl ).
analysis aims
wing uavs
wind gusts
uncertain environments
uavs ).
state error
soft actor
rigorous evaluation
results demonstrate
relative strengths
reinforcement learning
recent studies
paper aims
major shift
leading continuous
environmental disturbances
deliver robust
control pitch
best trade
400 episodes