Normalized total loss on the Facebook dataset (DCOR with and without RLC).

<p>To enable a fair visual comparison of training dynamics, each curve is normalized as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0335135#pone.0335135.e243" target="_blank">Eq (29)</a> by dividing by its epoch-1 value and EMA-smoot...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autor principal: Hossein Rafieizadeh (22676722) (author)
Outros Autores: Hadi Zare (20073000) (author), Mohsen Ghassemi Parsa (22676725) (author), Hocine Cherifi (8177628) (author)
Publicado em: 2025
Assuntos:
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:<p>To enable a fair visual comparison of training dynamics, each curve is normalized as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0335135#pone.0335135.e243" target="_blank">Eq (29)</a> by dividing by its epoch-1 value and EMA-smoothed (exponential moving average) with . The EMA is computed as with . This normalization emphasizes relative convergence behavior (shape and stability) rather than raw magnitudes: with RLC, the total objective continues to decrease in late epochs, whereas without RLC it plateaus, consistent with the ablation trends in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0335135#pone.0335135.t005" target="_blank">Table 5</a>.</p>