Figure 5 from Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma

<p>Intracellular pH shift of FRCs contributes to mitochondrial changes and the observed signature. <b>A,</b> Metabolic analysis of mitochondrial function in the computational model. Shown is OCR for mitochondria exposed to LA versus control. <b>B,</b> Quantification of...

Popoln opis

Shranjeno v:
Bibliografske podrobnosti
Glavni avtor: Angela Riedel (15130557) (author)
Drugi avtorji: Moutaz Helal (15130560) (author), Luisa Pedro (15130563) (author), Jonathan J. Swietlik (15130566) (author), David Shorthouse (2733004) (author), Werner Schmitz (15130569) (author), Lisa Haas (15130572) (author), Timothy Young (15130575) (author), Ana S.H. da Costa (15130578) (author), Sarah Davidson (8254992) (author), Pranjali Bhandare (13789834) (author), Elmar Wolf (14952454) (author), Benjamin A. Hall (199856) (author), Christian Frezza (15130581) (author), Thordur Oskarsson (2313193) (author), Jacqueline D. Shields (14889899) (author)
Izdano: 2025
Teme:
Oznake: Označite
Brez oznak, prvi označite!
_version_ 1849927631458271232
author Angela Riedel (15130557)
author2 Moutaz Helal (15130560)
Luisa Pedro (15130563)
Jonathan J. Swietlik (15130566)
David Shorthouse (2733004)
Werner Schmitz (15130569)
Lisa Haas (15130572)
Timothy Young (15130575)
Ana S.H. da Costa (15130578)
Sarah Davidson (8254992)
Pranjali Bhandare (13789834)
Elmar Wolf (14952454)
Benjamin A. Hall (199856)
Christian Frezza (15130581)
Thordur Oskarsson (2313193)
Jacqueline D. Shields (14889899)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author_facet Angela Riedel (15130557)
Moutaz Helal (15130560)
Luisa Pedro (15130563)
Jonathan J. Swietlik (15130566)
David Shorthouse (2733004)
Werner Schmitz (15130569)
Lisa Haas (15130572)
Timothy Young (15130575)
Ana S.H. da Costa (15130578)
Sarah Davidson (8254992)
Pranjali Bhandare (13789834)
Elmar Wolf (14952454)
Benjamin A. Hall (199856)
Christian Frezza (15130581)
Thordur Oskarsson (2313193)
Jacqueline D. Shields (14889899)
author_role author
dc.creator.none.fl_str_mv Angela Riedel (15130557)
Moutaz Helal (15130560)
Luisa Pedro (15130563)
Jonathan J. Swietlik (15130566)
David Shorthouse (2733004)
Werner Schmitz (15130569)
Lisa Haas (15130572)
Timothy Young (15130575)
Ana S.H. da Costa (15130578)
Sarah Davidson (8254992)
Pranjali Bhandare (13789834)
Elmar Wolf (14952454)
Benjamin A. Hall (199856)
Christian Frezza (15130581)
Thordur Oskarsson (2313193)
Jacqueline D. Shields (14889899)
dc.date.none.fl_str_mv 2025-11-25T13:44:04Z
dc.identifier.none.fl_str_mv 10.1158/2326-6066.30710350
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Figure_5_from_Tumor-Derived_Lactic_Acid_Modulates_Activation_and_Metabolic_Status_of_Draining_Lymph_Node_Stroma/30710350
dc.rights.none.fl_str_mv CC BY
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cancer
Tumor Biology
Molecular and Cellular Biology
Immuno-oncology
Immunology
Immune responses to cancer
Metabolism
Mitochondrial function
Progression, Invasion & Metastasis
Metastasis
Tumor Microenvironment
Tumor-stromal cell interactions
dc.title.none.fl_str_mv Figure 5 from Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Intracellular pH shift of FRCs contributes to mitochondrial changes and the observed signature. <b>A,</b> Metabolic analysis of mitochondrial function in the computational model. Shown is OCR for mitochondria exposed to LA versus control. <b>B,</b> Quantification of <i>Pdpn, Mct1</i>, and <i>Mct4</i> mRNA in cultured FRCs. Displayed as relative gene expression with <i>Actb</i> as housekeeping and <i>Pdpn</i> as reference gene. <i>n</i> = 3 independent experiments in duplicate. <b>C,</b> Quantification of <i>Mct1</i> (left) and <i>Mct4</i> (right) mRNA in FRCs treated with CCM, B16.F10 TCM, Veh – H<sub>2</sub>O, or 15 mmol/L LA for 4 days. <i>n</i> = 2 to 4 independent experiments. <b>D,</b> Intracellular pH of FRCs treated as in (<b>C</b>) and stained with cell-permeant ratiometric fluorescent pH indicator (SNARF). SNARF exhibits a pH-dependent emission shift calculated by λ<sub>586</sub>/λ<sub>610</sub>. Lower intracellular pHs give higher values. Control buffers used to adjust intracellular to extracellular pH (left). Representative histogram of the 532nm to 620/20BP shift for CCM, B16,F10 TCM, Veh – H<sub>2</sub>O, or 15 mmol/L LA (middle). Quantification thereof (right). <i>n</i> = 3 independent experiments in duplicate. <b>E,</b> Metabolic analysis of mitochondrial function in the computational model. Shown is OCR for mitochondria exposed to low pH (proton addition) versus control. <b>F,</b> Quantification of <i>Pdpn</i> (left) and <i>Thy1</i> (right) mRNA in FRCs cultures after 48 hours of treatment with normal pH RPMI and vehicle (RPMI pH7.4 + Veh), normal pH RPMI and 100 nmol/L nigericin (RPMI pH7.4 + Nig), pH6 RPMI and vehicle (RPMI pH6 + Veh), or pH6 RPMI and 100 nmol/L nigericin (RPMI pH6 + Nig). <i>n</i> = 2 to 3 independent experiments in duplicate. <b>G,</b> OCR of FRCs treated with pH7.4 RPMI and 100 nmol/L nigericin (RPMI pH7.4 +Nig) or RPMI at pH6.5 and 100 nmol/L nigericin (RPMI pH6.5 +Nig) at baseline and in response to oligomycin, FCCP, and rotenone plus antimycin A. Representative data of three experiments each with five replicates. <b>H,</b> Baseline OCR from FRCs treated as in <b>G</b>. Data are mean with SEM (unless stated differently). Significance (*, <i>P</i> < 0.05; **, <i>P</i> < 0.01; ***, <i>P</i> < 0.001; and ****, <i>P</i> < 0.0001) was determined by unpaired two-tailed <i>t</i> test (<b>A–E</b>) and (<b>G</b>) or one-way ANOVA with Tukey <i>post hoc</i> (<b>F</b>). B16, B16.F10; LA, lactic acid; min, minutes.</p>
eu_rights_str_mv openAccess
id Manara_af9502a1a162404109e34aa80951523f
identifier_str_mv 10.1158/2326-6066.30710350
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30710350
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY
spelling Figure 5 from Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node StromaAngela Riedel (15130557)Moutaz Helal (15130560)Luisa Pedro (15130563)Jonathan J. Swietlik (15130566)David Shorthouse (2733004)Werner Schmitz (15130569)Lisa Haas (15130572)Timothy Young (15130575)Ana S.H. da Costa (15130578)Sarah Davidson (8254992)Pranjali Bhandare (13789834)Elmar Wolf (14952454)Benjamin A. Hall (199856)Christian Frezza (15130581)Thordur Oskarsson (2313193)Jacqueline D. Shields (14889899)CancerTumor BiologyMolecular and Cellular BiologyImmuno-oncologyImmunologyImmune responses to cancerMetabolismMitochondrial functionProgression, Invasion & MetastasisMetastasisTumor MicroenvironmentTumor-stromal cell interactions<p>Intracellular pH shift of FRCs contributes to mitochondrial changes and the observed signature. <b>A,</b> Metabolic analysis of mitochondrial function in the computational model. Shown is OCR for mitochondria exposed to LA versus control. <b>B,</b> Quantification of <i>Pdpn, Mct1</i>, and <i>Mct4</i> mRNA in cultured FRCs. Displayed as relative gene expression with <i>Actb</i> as housekeeping and <i>Pdpn</i> as reference gene. <i>n</i> = 3 independent experiments in duplicate. <b>C,</b> Quantification of <i>Mct1</i> (left) and <i>Mct4</i> (right) mRNA in FRCs treated with CCM, B16.F10 TCM, Veh – H<sub>2</sub>O, or 15 mmol/L LA for 4 days. <i>n</i> = 2 to 4 independent experiments. <b>D,</b> Intracellular pH of FRCs treated as in (<b>C</b>) and stained with cell-permeant ratiometric fluorescent pH indicator (SNARF). SNARF exhibits a pH-dependent emission shift calculated by λ<sub>586</sub>/λ<sub>610</sub>. Lower intracellular pHs give higher values. Control buffers used to adjust intracellular to extracellular pH (left). Representative histogram of the 532nm to 620/20BP shift for CCM, B16,F10 TCM, Veh – H<sub>2</sub>O, or 15 mmol/L LA (middle). Quantification thereof (right). <i>n</i> = 3 independent experiments in duplicate. <b>E,</b> Metabolic analysis of mitochondrial function in the computational model. Shown is OCR for mitochondria exposed to low pH (proton addition) versus control. <b>F,</b> Quantification of <i>Pdpn</i> (left) and <i>Thy1</i> (right) mRNA in FRCs cultures after 48 hours of treatment with normal pH RPMI and vehicle (RPMI pH7.4 + Veh), normal pH RPMI and 100 nmol/L nigericin (RPMI pH7.4 + Nig), pH6 RPMI and vehicle (RPMI pH6 + Veh), or pH6 RPMI and 100 nmol/L nigericin (RPMI pH6 + Nig). <i>n</i> = 2 to 3 independent experiments in duplicate. <b>G,</b> OCR of FRCs treated with pH7.4 RPMI and 100 nmol/L nigericin (RPMI pH7.4 +Nig) or RPMI at pH6.5 and 100 nmol/L nigericin (RPMI pH6.5 +Nig) at baseline and in response to oligomycin, FCCP, and rotenone plus antimycin A. Representative data of three experiments each with five replicates. <b>H,</b> Baseline OCR from FRCs treated as in <b>G</b>. Data are mean with SEM (unless stated differently). Significance (*, <i>P</i> < 0.05; **, <i>P</i> < 0.01; ***, <i>P</i> < 0.001; and ****, <i>P</i> < 0.0001) was determined by unpaired two-tailed <i>t</i> test (<b>A–E</b>) and (<b>G</b>) or one-way ANOVA with Tukey <i>post hoc</i> (<b>F</b>). B16, B16.F10; LA, lactic acid; min, minutes.</p>2025-11-25T13:44:04ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1158/2326-6066.30710350https://figshare.com/articles/figure/Figure_5_from_Tumor-Derived_Lactic_Acid_Modulates_Activation_and_Metabolic_Status_of_Draining_Lymph_Node_Stroma/30710350CC BYinfo:eu-repo/semantics/openAccessoai:figshare.com:article/307103502025-11-25T13:44:04Z
spellingShingle Figure 5 from Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma
Angela Riedel (15130557)
Cancer
Tumor Biology
Molecular and Cellular Biology
Immuno-oncology
Immunology
Immune responses to cancer
Metabolism
Mitochondrial function
Progression, Invasion & Metastasis
Metastasis
Tumor Microenvironment
Tumor-stromal cell interactions
status_str publishedVersion
title Figure 5 from Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma
title_full Figure 5 from Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma
title_fullStr Figure 5 from Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma
title_full_unstemmed Figure 5 from Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma
title_short Figure 5 from Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma
title_sort Figure 5 from Tumor-Derived Lactic Acid Modulates Activation and Metabolic Status of Draining Lymph Node Stroma
topic Cancer
Tumor Biology
Molecular and Cellular Biology
Immuno-oncology
Immunology
Immune responses to cancer
Metabolism
Mitochondrial function
Progression, Invasion & Metastasis
Metastasis
Tumor Microenvironment
Tumor-stromal cell interactions