Railway node data.

<div><p>Static models fail to track the fast-changing supply-demand balance in global logistics. For instance, the high-speed rail express corridor exhibits a transport capacity utilisation rate of less than 70% during peak periods, along with a node load imbalance of 0.57. Existing algo...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Dandan Wang (286632) (author)
مؤلفون آخرون: Ni Sun (11936027) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852014708715945984
author Dandan Wang (286632)
author2 Ni Sun (11936027)
author2_role author
author_facet Dandan Wang (286632)
Ni Sun (11936027)
author_role author
dc.creator.none.fl_str_mv Dandan Wang (286632)
Ni Sun (11936027)
dc.date.none.fl_str_mv 2025-11-19T18:32:12Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0332537.g004
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Railway_node_data_/30658992
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Ecology
Science Policy
Biological Sciences not elsewhere classified
cost drops 28
convergence time overruns
co &# 8322
capacity matching degree
time optimization paradigm
sudden demand changes
second equilibrium convergence
scale logistics networks
reinforcement learning methods
node load imbalance
combines sparse gradient
traditional methods
objective optimization
node network
global logistics
demand balance
accelerated equilibrium
tensor decomposition
study proposes
scalable real
research innovates
realizes sub
prediction error
peak periods
framework achieves
falls 27
existing algorithms
driven framework
disturbance recovery
constrained multi
changing supply
benchmark performance
4 %,
dc.title.none.fl_str_mv Railway node data.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <div><p>Static models fail to track the fast-changing supply-demand balance in global logistics. For instance, the high-speed rail express corridor exhibits a transport capacity utilisation rate of less than 70% during peak periods, along with a node load imbalance of 0.57. Existing algorithms have been shown to exhibit a 7.8% prediction error and 38% convergence time overruns during sudden demand changes. This study proposes a gradient-driven framework that combines sparse gradient, tensor decomposition, and constrained multi-objective optimization. Cost drops 28.3%, transit time shrinks 37.3%, container turnover rises 41.4%, and CO₂ falls 27.7%. In the 15-node network, the framework achieves a capacity matching degree of 89.3% with a root mean square error of 0.145, which is better than the benchmark performance of traditional methods and reinforcement learning methods. This research innovates a scalable real-time optimization paradigm, realizes sub-second equilibrium convergence and anti-disturbance recovery of large-scale logistics networks, and lays a foundation for intelligent, low-carbon and resilient logistics ecology.</p></div>
eu_rights_str_mv openAccess
id Manara_b0d2cdf7ce02bfd9f5e2c261a0e01a94
identifier_str_mv 10.1371/journal.pone.0332537.g004
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30658992
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Railway node data.Dandan Wang (286632)Ni Sun (11936027)EcologyScience PolicyBiological Sciences not elsewhere classifiedcost drops 28convergence time overrunsco &# 8322capacity matching degreetime optimization paradigmsudden demand changessecond equilibrium convergencescale logistics networksreinforcement learning methodsnode load imbalancecombines sparse gradienttraditional methodsobjective optimizationnode networkglobal logisticsdemand balanceaccelerated equilibriumtensor decompositionstudy proposesscalable realresearch innovatesrealizes subprediction errorpeak periodsframework achievesfalls 27existing algorithmsdriven frameworkdisturbance recoveryconstrained multichanging supplybenchmark performance4 %,<div><p>Static models fail to track the fast-changing supply-demand balance in global logistics. For instance, the high-speed rail express corridor exhibits a transport capacity utilisation rate of less than 70% during peak periods, along with a node load imbalance of 0.57. Existing algorithms have been shown to exhibit a 7.8% prediction error and 38% convergence time overruns during sudden demand changes. This study proposes a gradient-driven framework that combines sparse gradient, tensor decomposition, and constrained multi-objective optimization. Cost drops 28.3%, transit time shrinks 37.3%, container turnover rises 41.4%, and CO₂ falls 27.7%. In the 15-node network, the framework achieves a capacity matching degree of 89.3% with a root mean square error of 0.145, which is better than the benchmark performance of traditional methods and reinforcement learning methods. This research innovates a scalable real-time optimization paradigm, realizes sub-second equilibrium convergence and anti-disturbance recovery of large-scale logistics networks, and lays a foundation for intelligent, low-carbon and resilient logistics ecology.</p></div>2025-11-19T18:32:12ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0332537.g004https://figshare.com/articles/figure/Railway_node_data_/30658992CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306589922025-11-19T18:32:12Z
spellingShingle Railway node data.
Dandan Wang (286632)
Ecology
Science Policy
Biological Sciences not elsewhere classified
cost drops 28
convergence time overruns
co &# 8322
capacity matching degree
time optimization paradigm
sudden demand changes
second equilibrium convergence
scale logistics networks
reinforcement learning methods
node load imbalance
combines sparse gradient
traditional methods
objective optimization
node network
global logistics
demand balance
accelerated equilibrium
tensor decomposition
study proposes
scalable real
research innovates
realizes sub
prediction error
peak periods
framework achieves
falls 27
existing algorithms
driven framework
disturbance recovery
constrained multi
changing supply
benchmark performance
4 %,
status_str publishedVersion
title Railway node data.
title_full Railway node data.
title_fullStr Railway node data.
title_full_unstemmed Railway node data.
title_short Railway node data.
title_sort Railway node data.
topic Ecology
Science Policy
Biological Sciences not elsewhere classified
cost drops 28
convergence time overruns
co &# 8322
capacity matching degree
time optimization paradigm
sudden demand changes
second equilibrium convergence
scale logistics networks
reinforcement learning methods
node load imbalance
combines sparse gradient
traditional methods
objective optimization
node network
global logistics
demand balance
accelerated equilibrium
tensor decomposition
study proposes
scalable real
research innovates
realizes sub
prediction error
peak periods
framework achieves
falls 27
existing algorithms
driven framework
disturbance recovery
constrained multi
changing supply
benchmark performance
4 %,