Case study on Esophageal Squamous Cell Carcinoma (ESCC).

<p>(A) State specific DNB subnetwork identified from GSE199654 across six ESCC states, including 28 genes (14 known, 14 novel). (B) State wise AUROC for multiclass classification using DNBs.</p>

שמור ב:
מידע ביבליוגרפי
מחבר ראשי: Fatemeh Keikha (20917848) (author)
מחברים אחרים: Chuanyuan Wang (22676721) (author), Zhixia Yang (3180567) (author), Zhi-Ping Liu (149304) (author)
יצא לאור: 2025
נושאים:
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
_version_ 1849927641100976128
author Fatemeh Keikha (20917848)
author2 Chuanyuan Wang (22676721)
Zhixia Yang (3180567)
Zhi-Ping Liu (149304)
author2_role author
author
author
author_facet Fatemeh Keikha (20917848)
Chuanyuan Wang (22676721)
Zhixia Yang (3180567)
Zhi-Ping Liu (149304)
author_role author
dc.creator.none.fl_str_mv Fatemeh Keikha (20917848)
Chuanyuan Wang (22676721)
Zhixia Yang (3180567)
Zhi-Ping Liu (149304)
dc.date.none.fl_str_mv 2025-11-24T18:36:52Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013743.g005
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Case_study_on_Esophageal_Squamous_Cell_Carcinoma_ESCC_/30697987
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Medicine
Genetics
Biotechnology
Cancer
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
wasserstein optimal transport
real world dataset
quantified via gromov
enhancing diagnostic precision
dynamic network index
deep neural network
ablation studies confirm
regulatory role transitions
gene regulatory networks
combining regulatory rewiring
analyzing disease evolution
temporal expression dynamics
reflect dynamic changes
neglecting structural rewiring
multilayer network models
modeling disease progression
state alignment provides
understanding cancer progression
state graph alignment
disease state classification
state specific biomarkers
disease progression
state alignment
specific expression
multilayer graph
cancer progression
disease state
regulatory variability
regulatory roles
structural shifts
significant changes
prioritized biomarkers
classification accuracy
state single
xlink ">
topological features
synthetic simulated
ranked using
powerful strategy
overall performance
meaningful shifts
gats ),
gastric adenocarcinoma
gac ),
framework designed
findings suggest
dni ),
distinct layer
contextualized embeddings
cell data
dc.title.none.fl_str_mv Case study on Esophageal Squamous Cell Carcinoma (ESCC).
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>(A) State specific DNB subnetwork identified from GSE199654 across six ESCC states, including 28 genes (14 known, 14 novel). (B) State wise AUROC for multiclass classification using DNBs.</p>
eu_rights_str_mv openAccess
id Manara_b120a7b47573f177f74b5421d5fcf346
identifier_str_mv 10.1371/journal.pcbi.1013743.g005
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697987
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Case study on Esophageal Squamous Cell Carcinoma (ESCC).Fatemeh Keikha (20917848)Chuanyuan Wang (22676721)Zhixia Yang (3180567)Zhi-Ping Liu (149304)MedicineGeneticsBiotechnologyCancerInfectious DiseasesBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedwasserstein optimal transportreal world datasetquantified via gromovenhancing diagnostic precisiondynamic network indexdeep neural networkablation studies confirmregulatory role transitionsgene regulatory networkscombining regulatory rewiringanalyzing disease evolutiontemporal expression dynamicsreflect dynamic changesneglecting structural rewiringmultilayer network modelsmodeling disease progressionstate alignment providesunderstanding cancer progressionstate graph alignmentdisease state classificationstate specific biomarkersdisease progressionstate alignmentspecific expressionmultilayer graphcancer progressiondisease stateregulatory variabilityregulatory rolesstructural shiftssignificant changesprioritized biomarkersclassification accuracystate singlexlink ">topological featuressynthetic simulatedranked usingpowerful strategyoverall performancemeaningful shiftsgats ),gastric adenocarcinomagac ),framework designedfindings suggestdni ),distinct layercontextualized embeddingscell data<p>(A) State specific DNB subnetwork identified from GSE199654 across six ESCC states, including 28 genes (14 known, 14 novel). (B) State wise AUROC for multiclass classification using DNBs.</p>2025-11-24T18:36:52ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pcbi.1013743.g005https://figshare.com/articles/figure/Case_study_on_Esophageal_Squamous_Cell_Carcinoma_ESCC_/30697987CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306979872025-11-24T18:36:52Z
spellingShingle Case study on Esophageal Squamous Cell Carcinoma (ESCC).
Fatemeh Keikha (20917848)
Medicine
Genetics
Biotechnology
Cancer
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
wasserstein optimal transport
real world dataset
quantified via gromov
enhancing diagnostic precision
dynamic network index
deep neural network
ablation studies confirm
regulatory role transitions
gene regulatory networks
combining regulatory rewiring
analyzing disease evolution
temporal expression dynamics
reflect dynamic changes
neglecting structural rewiring
multilayer network models
modeling disease progression
state alignment provides
understanding cancer progression
state graph alignment
disease state classification
state specific biomarkers
disease progression
state alignment
specific expression
multilayer graph
cancer progression
disease state
regulatory variability
regulatory roles
structural shifts
significant changes
prioritized biomarkers
classification accuracy
state single
xlink ">
topological features
synthetic simulated
ranked using
powerful strategy
overall performance
meaningful shifts
gats ),
gastric adenocarcinoma
gac ),
framework designed
findings suggest
dni ),
distinct layer
contextualized embeddings
cell data
status_str publishedVersion
title Case study on Esophageal Squamous Cell Carcinoma (ESCC).
title_full Case study on Esophageal Squamous Cell Carcinoma (ESCC).
title_fullStr Case study on Esophageal Squamous Cell Carcinoma (ESCC).
title_full_unstemmed Case study on Esophageal Squamous Cell Carcinoma (ESCC).
title_short Case study on Esophageal Squamous Cell Carcinoma (ESCC).
title_sort Case study on Esophageal Squamous Cell Carcinoma (ESCC).
topic Medicine
Genetics
Biotechnology
Cancer
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
wasserstein optimal transport
real world dataset
quantified via gromov
enhancing diagnostic precision
dynamic network index
deep neural network
ablation studies confirm
regulatory role transitions
gene regulatory networks
combining regulatory rewiring
analyzing disease evolution
temporal expression dynamics
reflect dynamic changes
neglecting structural rewiring
multilayer network models
modeling disease progression
state alignment provides
understanding cancer progression
state graph alignment
disease state classification
state specific biomarkers
disease progression
state alignment
specific expression
multilayer graph
cancer progression
disease state
regulatory variability
regulatory roles
structural shifts
significant changes
prioritized biomarkers
classification accuracy
state single
xlink ">
topological features
synthetic simulated
ranked using
powerful strategy
overall performance
meaningful shifts
gats ),
gastric adenocarcinoma
gac ),
framework designed
findings suggest
dni ),
distinct layer
contextualized embeddings
cell data