_version_ 1852015926333931520
author Sevtap Tırınk (22394716)
author_facet Sevtap Tırınk (22394716)
author_role author
dc.creator.none.fl_str_mv Sevtap Tırınk (22394716)
dc.date.none.fl_str_mv 2025-10-08T18:00:11Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0334252.t005
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/The_goodness_of_fit_criteria_results_in_all_algorithms_for_optimal_hyperparameter_values_/30310622
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Ecology
Science Policy
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
threatens environmental sustainability
svm )&# 8212
suggest practical implications
pollutant data collected
mean absolute error
highest prediction accuracy
extreme gradient boosting
early warning systems
monitoring air quality
air quality index
&# 8323 ;)
&# 8322 ;,
term environmental patterns
support vector machine
wind speed ).
svm </ p
five meteorological variables
air pollution
&# 252
wind direction
term assessment
machine learning
158 ).
take precautions
study presents
results demonstrate
relative humidity
performance metrics
global problem
evaluated using
enabling individuals
comparative approach
based forecasting
dc.title.none.fl_str_mv The goodness of fit criteria results in all algorithms for optimal hyperparameter values.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>The goodness of fit criteria results in all algorithms for optimal hyperparameter values.</p>
eu_rights_str_mv openAccess
id Manara_b1ea7637dd7a13529f5df2f2f531ee2d
identifier_str_mv 10.1371/journal.pone.0334252.t005
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30310622
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The goodness of fit criteria results in all algorithms for optimal hyperparameter values.Sevtap Tırınk (22394716)EcologyScience PolicyEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedthreatens environmental sustainabilitysvm )&# 8212suggest practical implicationspollutant data collectedmean absolute errorhighest prediction accuracyextreme gradient boostingearly warning systemsmonitoring air qualityair quality index&# 8323 ;)&# 8322 ;,term environmental patternssupport vector machinewind speed ).svm </ pfive meteorological variablesair pollution&# 252wind directionterm assessmentmachine learning158 ).take precautionsstudy presentsresults demonstraterelative humidityperformance metricsglobal problemevaluated usingenabling individualscomparative approachbased forecasting<p>The goodness of fit criteria results in all algorithms for optimal hyperparameter values.</p>2025-10-08T18:00:11ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0334252.t005https://figshare.com/articles/dataset/The_goodness_of_fit_criteria_results_in_all_algorithms_for_optimal_hyperparameter_values_/30310622CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/303106222025-10-08T18:00:11Z
spellingShingle The goodness of fit criteria results in all algorithms for optimal hyperparameter values.
Sevtap Tırınk (22394716)
Ecology
Science Policy
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
threatens environmental sustainability
svm )&# 8212
suggest practical implications
pollutant data collected
mean absolute error
highest prediction accuracy
extreme gradient boosting
early warning systems
monitoring air quality
air quality index
&# 8323 ;)
&# 8322 ;,
term environmental patterns
support vector machine
wind speed ).
svm </ p
five meteorological variables
air pollution
&# 252
wind direction
term assessment
machine learning
158 ).
take precautions
study presents
results demonstrate
relative humidity
performance metrics
global problem
evaluated using
enabling individuals
comparative approach
based forecasting
status_str publishedVersion
title The goodness of fit criteria results in all algorithms for optimal hyperparameter values.
title_full The goodness of fit criteria results in all algorithms for optimal hyperparameter values.
title_fullStr The goodness of fit criteria results in all algorithms for optimal hyperparameter values.
title_full_unstemmed The goodness of fit criteria results in all algorithms for optimal hyperparameter values.
title_short The goodness of fit criteria results in all algorithms for optimal hyperparameter values.
title_sort The goodness of fit criteria results in all algorithms for optimal hyperparameter values.
topic Ecology
Science Policy
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
threatens environmental sustainability
svm )&# 8212
suggest practical implications
pollutant data collected
mean absolute error
highest prediction accuracy
extreme gradient boosting
early warning systems
monitoring air quality
air quality index
&# 8323 ;)
&# 8322 ;,
term environmental patterns
support vector machine
wind speed ).
svm </ p
five meteorological variables
air pollution
&# 252
wind direction
term assessment
machine learning
158 ).
take precautions
study presents
results demonstrate
relative humidity
performance metrics
global problem
evaluated using
enabling individuals
comparative approach
based forecasting