Machine Learning-Driven Cross-Species Toxicity Prediction for Advancing Ecologically Relevant PFAS Water Quality Criteria
Traditional toxicity testing cannot keep pace with the rapid growth of synthetic chemicals, creating major data gaps that hinder the development of water quality criteria (WQC) for emerging contaminants. This study developed a machine learning model integrating compound- and organism-related feature...
Đã lưu trong:
| Tác giả chính: | Weigang Liang (734333) (author) |
|---|---|
| Tác giả khác: | Jingya Li (309241) (author), Xiaolei Wang (139592) (author), John P. Giesy (302766) (author), Xiaoli Zhao (118708) (author) |
| Được phát hành: |
2025
|
| Những chủ đề: | |
| Các nhãn: |
Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
Những quyển sách tương tự
-
Ecological similarities and dissimilarities between donor and recipient regions shape global plant naturalizations
Bằng: Shuya Fan (12861446)
Được phát hành: (2025) -
V1-V4_NativeSpecies
Bằng: Thomas Evans (20844503)
Được phát hành: (2025) -
Data and code for manuscript <b>Artificial Surface Water Broadens the Spatiotemporal Footprint of Herbivores and Alters Species Responses, published in Ecological Applications</b>
Bằng: Robert McCleery (16548156)
Được phát hành: (2025) -
Data and code for models and plots to accompany the manuscript "Traits explain canopy tree occurrence along regional environmental gradients, a subset combine to be useful."
Bằng: PETER VESK (1145399)
Được phát hành: (2025) -
<b>Data for "</b>Nitrogen enrichment amplifies the role of dominant species in sustaining ecosystem multifunctionality across spatial scales<b>"</b>
Bằng: Xi Zhou (22650125)
Được phát hành: (2025)