Machine Learning-Driven Cross-Species Toxicity Prediction for Advancing Ecologically Relevant PFAS Water Quality Criteria
Traditional toxicity testing cannot keep pace with the rapid growth of synthetic chemicals, creating major data gaps that hinder the development of water quality criteria (WQC) for emerging contaminants. This study developed a machine learning model integrating compound- and organism-related feature...
Saved in:
| 主要作者: | Weigang Liang (734333) (author) |
|---|---|
| 其他作者: | Jingya Li (309241) (author), Xiaolei Wang (139592) (author), John P. Giesy (302766) (author), Xiaoli Zhao (118708) (author) |
| 出版: |
2025
|
| 主題: | |
| 標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Ecological similarities and dissimilarities between donor and recipient regions shape global plant naturalizations
由: Shuya Fan (12861446)
出版: (2025) -
V1-V4_NativeSpecies
由: Thomas Evans (20844503)
出版: (2025) -
Data and code for manuscript <b>Artificial Surface Water Broadens the Spatiotemporal Footprint of Herbivores and Alters Species Responses, published in Ecological Applications</b>
由: Robert McCleery (16548156)
出版: (2025) -
Data and code for models and plots to accompany the manuscript "Traits explain canopy tree occurrence along regional environmental gradients, a subset combine to be useful."
由: PETER VESK (1145399)
出版: (2025) -
<b>Data for "</b>Nitrogen enrichment amplifies the role of dominant species in sustaining ecosystem multifunctionality across spatial scales<b>"</b>
由: Xi Zhou (22650125)
出版: (2025)