Machine Learning-Driven Cross-Species Toxicity Prediction for Advancing Ecologically Relevant PFAS Water Quality Criteria
Traditional toxicity testing cannot keep pace with the rapid growth of synthetic chemicals, creating major data gaps that hinder the development of water quality criteria (WQC) for emerging contaminants. This study developed a machine learning model integrating compound- and organism-related feature...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , |
| Publicado: |
2025
|
| Materias: | |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|