Relevant data underlying the findings described in manuscript.

<p>Relevant data underlying the findings described in manuscript.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Lin Qi (128224) (author)
مؤلفون آخرون: Yunjie Xie (5126780) (author), Qianqian Zhang (587342) (author), Jian Zhang (1682) (author), Yanhong Ma (163685) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852023944627879936
author Lin Qi (128224)
author2 Yunjie Xie (5126780)
Qianqian Zhang (587342)
Jian Zhang (1682)
Yanhong Ma (163685)
author2_role author
author
author
author
author_facet Lin Qi (128224)
Yunjie Xie (5126780)
Qianqian Zhang (587342)
Jian Zhang (1682)
Yanhong Ma (163685)
author_role author
dc.creator.none.fl_str_mv Lin Qi (128224)
Yunjie Xie (5126780)
Qianqian Zhang (587342)
Jian Zhang (1682)
Yanhong Ma (163685)
dc.date.none.fl_str_mv 2025-01-03T18:35:17Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0316277.s001
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Relevant_data_underlying_the_findings_described_in_manuscript_/28133116
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biotechnology
Cancer
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> e
dataset containing 262
commerce faces challenges
752 online reviews
model &# 8217
predict perceived risk
influence perceived risk
extract thematic features
analyzing review content
feature extraction phase
perceived risk
thematic features
review content
risk samples
prediction phase
online shopping
textcnn model
predictive model
content homogenization
feature fusion
feature characteristics
critical feature
xgboost algorithm
website information
test set
skincare products
skin safety
significant differences
paper aims
merchant characteristics
interpretability analysis
f1 score
electronic products
different contexts
86 %,
85 %.
84 %,
dc.title.none.fl_str_mv Relevant data underlying the findings described in manuscript.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Relevant data underlying the findings described in manuscript.</p>
eu_rights_str_mv openAccess
id Manara_bdb5c331d05c7d2d081029a2d4bdb655
identifier_str_mv 10.1371/journal.pone.0316277.s001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28133116
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Relevant data underlying the findings described in manuscript.Lin Qi (128224)Yunjie Xie (5126780)Qianqian Zhang (587342)Jian Zhang (1682)Yanhong Ma (163685)BiotechnologyCancerBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedxlink "> edataset containing 262commerce faces challenges752 online reviewsmodel &# 8217predict perceived riskinfluence perceived riskextract thematic featuresanalyzing review contentfeature extraction phaseperceived riskthematic featuresreview contentrisk samplesprediction phaseonline shoppingtextcnn modelpredictive modelcontent homogenizationfeature fusionfeature characteristicscritical featurexgboost algorithmwebsite informationtest setskincare productsskin safetysignificant differencespaper aimsmerchant characteristicsinterpretability analysisf1 scoreelectronic productsdifferent contexts86 %,85 %.84 %,<p>Relevant data underlying the findings described in manuscript.</p>2025-01-03T18:35:17ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0316277.s001https://figshare.com/articles/dataset/Relevant_data_underlying_the_findings_described_in_manuscript_/28133116CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/281331162025-01-03T18:35:17Z
spellingShingle Relevant data underlying the findings described in manuscript.
Lin Qi (128224)
Biotechnology
Cancer
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> e
dataset containing 262
commerce faces challenges
752 online reviews
model &# 8217
predict perceived risk
influence perceived risk
extract thematic features
analyzing review content
feature extraction phase
perceived risk
thematic features
review content
risk samples
prediction phase
online shopping
textcnn model
predictive model
content homogenization
feature fusion
feature characteristics
critical feature
xgboost algorithm
website information
test set
skincare products
skin safety
significant differences
paper aims
merchant characteristics
interpretability analysis
f1 score
electronic products
different contexts
86 %,
85 %.
84 %,
status_str publishedVersion
title Relevant data underlying the findings described in manuscript.
title_full Relevant data underlying the findings described in manuscript.
title_fullStr Relevant data underlying the findings described in manuscript.
title_full_unstemmed Relevant data underlying the findings described in manuscript.
title_short Relevant data underlying the findings described in manuscript.
title_sort Relevant data underlying the findings described in manuscript.
topic Biotechnology
Cancer
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> e
dataset containing 262
commerce faces challenges
752 online reviews
model &# 8217
predict perceived risk
influence perceived risk
extract thematic features
analyzing review content
feature extraction phase
perceived risk
thematic features
review content
risk samples
prediction phase
online shopping
textcnn model
predictive model
content homogenization
feature fusion
feature characteristics
critical feature
xgboost algorithm
website information
test set
skincare products
skin safety
significant differences
paper aims
merchant characteristics
interpretability analysis
f1 score
electronic products
different contexts
86 %,
85 %.
84 %,