Image 5_Retrospective BReast Intravoxel Incoherent Motion Multisite (BRIMM) multisoftware study.jpeg

Introduction<p>The intravoxel incoherent motion (IVIM) model of diffusion weighted imaging (DWI) provides imaging biomarkers for breast tumor characterization. It has been extensively applied for both diagnostic and prognostic goals in breast cancer, with increasing evidence supporting its cli...

Full description

Saved in:
Bibliographic Details
Main Author: Dibash Basukala (20772110) (author)
Other Authors: Artem Mikheev (20772113) (author), Xiaochun Li (143491) (author), Judith D. Goldberg (7928777) (author), Nima Gilani (20772116) (author), Linda Moy (20772119) (author), Katja Pinker (2742532) (author), Savannah C. Partridge (9986472) (author), Debosmita Biswas (18481035) (author), Masako Kataoka (818662) (author), Maya Honda (9469770) (author), Mami Iima (774464) (author), Sunitha B. Thakur (14983581) (author), Eric E. Sigmund (20772122) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852022520342904832
author Dibash Basukala (20772110)
author2 Artem Mikheev (20772113)
Xiaochun Li (143491)
Judith D. Goldberg (7928777)
Nima Gilani (20772116)
Linda Moy (20772119)
Katja Pinker (2742532)
Savannah C. Partridge (9986472)
Debosmita Biswas (18481035)
Masako Kataoka (818662)
Maya Honda (9469770)
Mami Iima (774464)
Sunitha B. Thakur (14983581)
Eric E. Sigmund (20772122)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author_facet Dibash Basukala (20772110)
Artem Mikheev (20772113)
Xiaochun Li (143491)
Judith D. Goldberg (7928777)
Nima Gilani (20772116)
Linda Moy (20772119)
Katja Pinker (2742532)
Savannah C. Partridge (9986472)
Debosmita Biswas (18481035)
Masako Kataoka (818662)
Maya Honda (9469770)
Mami Iima (774464)
Sunitha B. Thakur (14983581)
Eric E. Sigmund (20772122)
author_role author
dc.creator.none.fl_str_mv Dibash Basukala (20772110)
Artem Mikheev (20772113)
Xiaochun Li (143491)
Judith D. Goldberg (7928777)
Nima Gilani (20772116)
Linda Moy (20772119)
Katja Pinker (2742532)
Savannah C. Partridge (9986472)
Debosmita Biswas (18481035)
Masako Kataoka (818662)
Maya Honda (9469770)
Mami Iima (774464)
Sunitha B. Thakur (14983581)
Eric E. Sigmund (20772122)
dc.date.none.fl_str_mv 2025-02-24T05:07:35Z
dc.identifier.none.fl_str_mv 10.3389/fonc.2025.1524634.s006
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Image_5_Retrospective_BReast_Intravoxel_Incoherent_Motion_Multisite_BRIMM_multisoftware_study_jpeg/28467365
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Oncology and Carcinogenesis not elsewhere classified
IVIM
DWI
breast cancer
diagnosis
multisite
multisoftware
radiomics
robust
dc.title.none.fl_str_mv Image 5_Retrospective BReast Intravoxel Incoherent Motion Multisite (BRIMM) multisoftware study.jpeg
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description Introduction<p>The intravoxel incoherent motion (IVIM) model of diffusion weighted imaging (DWI) provides imaging biomarkers for breast tumor characterization. It has been extensively applied for both diagnostic and prognostic goals in breast cancer, with increasing evidence supporting its clinical relevance. However, variable performance exists in literature owing to the heterogeneity in datasets and quantification methods.</p>Methods<p>This work used retrospective anonymized breast MRI data (302 patients) from three sites employing three different software utilizing least-squares segmented algorithms and Bayesian fit to estimate 1<sub>st</sub> order radiomics of IVIM parameters perfusion fraction (f<sub>p</sub>), pseudo-diffusion (D<sub>p</sub>) and tissue diffusivity (D<sub>t</sub>). Pearson correlation (r) coefficients between software pairs were computed while logistic regression model was implemented to test malignancy detection and assess robustness of the IVIM metrics.</p>Results<p>D<sub>t</sub> and f<sub>p</sub> maps generated from different software showed consistency across platforms while D<sub>p</sub> maps were variable. The average correlation between the three software pairs at three different sites for 1<sub>st</sub> order radiomics of IVIM parameters were D<sub>t</sub>min/D<sub>t</sub>max/D<sub>t</sub>mean/D<sub>t</sub>variance/D<sub>t</sub>skew/D<sub>t</sub>kurt: 0.791/0.891/0.98/0.815/0.697/0.584; f<sub>p</sub>max/f<sub>p</sub>mean/f<sub>p</sub>variance/f<sub>p</sub>skew/f<sub>p</sub>kurt: 0.615/0.871/0.679/0.541/0.433; D<sub>p</sub>max/D<sub>p</sub>mean/D<sub>p</sub>variance/D<sub>p</sub>skew/D<sub>p</sub>kurt: 0.616/0.56/0.587/0.454/0.51. Correlation between least-squares algorithms were the highest. D<sub>t</sub>mean showed highest area under the ROC curve (AUC) with 0.85 and lowest coefficient of variation (CV) with 0.18% for benign and malignant differentiation using logistic regression. D<sub>t</sub> metrics were highly diagnostic as well as consistent along with f<sub>p</sub> metrics.</p>Discussion<p>Multiple 1<sub>st</sub> order radiomic features of D<sub>t</sub> and f<sub>p</sub> obtained from a heterogeneous multi-site breast lesion dataset showed strong software robustness and/or diagnostic utility, supporting their potential consideration in controlled prospective clinical trials.</p>
eu_rights_str_mv openAccess
id Manara_c01d7d2ac7e2cbdd5e8545667d913ef6
identifier_str_mv 10.3389/fonc.2025.1524634.s006
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28467365
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Image 5_Retrospective BReast Intravoxel Incoherent Motion Multisite (BRIMM) multisoftware study.jpegDibash Basukala (20772110)Artem Mikheev (20772113)Xiaochun Li (143491)Judith D. Goldberg (7928777)Nima Gilani (20772116)Linda Moy (20772119)Katja Pinker (2742532)Savannah C. Partridge (9986472)Debosmita Biswas (18481035)Masako Kataoka (818662)Maya Honda (9469770)Mami Iima (774464)Sunitha B. Thakur (14983581)Eric E. Sigmund (20772122)Oncology and Carcinogenesis not elsewhere classifiedIVIMDWIbreast cancerdiagnosismultisitemultisoftwareradiomicsrobustIntroduction<p>The intravoxel incoherent motion (IVIM) model of diffusion weighted imaging (DWI) provides imaging biomarkers for breast tumor characterization. It has been extensively applied for both diagnostic and prognostic goals in breast cancer, with increasing evidence supporting its clinical relevance. However, variable performance exists in literature owing to the heterogeneity in datasets and quantification methods.</p>Methods<p>This work used retrospective anonymized breast MRI data (302 patients) from three sites employing three different software utilizing least-squares segmented algorithms and Bayesian fit to estimate 1<sub>st</sub> order radiomics of IVIM parameters perfusion fraction (f<sub>p</sub>), pseudo-diffusion (D<sub>p</sub>) and tissue diffusivity (D<sub>t</sub>). Pearson correlation (r) coefficients between software pairs were computed while logistic regression model was implemented to test malignancy detection and assess robustness of the IVIM metrics.</p>Results<p>D<sub>t</sub> and f<sub>p</sub> maps generated from different software showed consistency across platforms while D<sub>p</sub> maps were variable. The average correlation between the three software pairs at three different sites for 1<sub>st</sub> order radiomics of IVIM parameters were D<sub>t</sub>min/D<sub>t</sub>max/D<sub>t</sub>mean/D<sub>t</sub>variance/D<sub>t</sub>skew/D<sub>t</sub>kurt: 0.791/0.891/0.98/0.815/0.697/0.584; f<sub>p</sub>max/f<sub>p</sub>mean/f<sub>p</sub>variance/f<sub>p</sub>skew/f<sub>p</sub>kurt: 0.615/0.871/0.679/0.541/0.433; D<sub>p</sub>max/D<sub>p</sub>mean/D<sub>p</sub>variance/D<sub>p</sub>skew/D<sub>p</sub>kurt: 0.616/0.56/0.587/0.454/0.51. Correlation between least-squares algorithms were the highest. D<sub>t</sub>mean showed highest area under the ROC curve (AUC) with 0.85 and lowest coefficient of variation (CV) with 0.18% for benign and malignant differentiation using logistic regression. D<sub>t</sub> metrics were highly diagnostic as well as consistent along with f<sub>p</sub> metrics.</p>Discussion<p>Multiple 1<sub>st</sub> order radiomic features of D<sub>t</sub> and f<sub>p</sub> obtained from a heterogeneous multi-site breast lesion dataset showed strong software robustness and/or diagnostic utility, supporting their potential consideration in controlled prospective clinical trials.</p>2025-02-24T05:07:35ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.3389/fonc.2025.1524634.s006https://figshare.com/articles/figure/Image_5_Retrospective_BReast_Intravoxel_Incoherent_Motion_Multisite_BRIMM_multisoftware_study_jpeg/28467365CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/284673652025-02-24T05:07:35Z
spellingShingle Image 5_Retrospective BReast Intravoxel Incoherent Motion Multisite (BRIMM) multisoftware study.jpeg
Dibash Basukala (20772110)
Oncology and Carcinogenesis not elsewhere classified
IVIM
DWI
breast cancer
diagnosis
multisite
multisoftware
radiomics
robust
status_str publishedVersion
title Image 5_Retrospective BReast Intravoxel Incoherent Motion Multisite (BRIMM) multisoftware study.jpeg
title_full Image 5_Retrospective BReast Intravoxel Incoherent Motion Multisite (BRIMM) multisoftware study.jpeg
title_fullStr Image 5_Retrospective BReast Intravoxel Incoherent Motion Multisite (BRIMM) multisoftware study.jpeg
title_full_unstemmed Image 5_Retrospective BReast Intravoxel Incoherent Motion Multisite (BRIMM) multisoftware study.jpeg
title_short Image 5_Retrospective BReast Intravoxel Incoherent Motion Multisite (BRIMM) multisoftware study.jpeg
title_sort Image 5_Retrospective BReast Intravoxel Incoherent Motion Multisite (BRIMM) multisoftware study.jpeg
topic Oncology and Carcinogenesis not elsewhere classified
IVIM
DWI
breast cancer
diagnosis
multisite
multisoftware
radiomics
robust