Kurtograms of different signals.

<p>(A) Kurtogram of signal 0. (B) Kurtogram of signal 1. (C) Kurtogram of signal 2. X-axis represents the frequency bands, Y-axis represents the resolution levels, color intensity represents the kurtosis value (higher intensity indicates higher kurtosis). Kurtograms exhibit similar impulses co...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Hang Zhao (143592) (author)
مؤلفون آخرون: Xiongfei Yin (21368130) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852020393452240896
author Hang Zhao (143592)
author2 Xiongfei Yin (21368130)
author2_role author
author_facet Hang Zhao (143592)
Xiongfei Yin (21368130)
author_role author
dc.creator.none.fl_str_mv Hang Zhao (143592)
Xiongfei Yin (21368130)
dc.date.none.fl_str_mv 2025-05-15T15:01:35Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0321484.g008
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Kurtograms_of_different_signals_/29075244
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Physiology
Biotechnology
Ecology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
variational mode decomposition
signal processing fields
pareto optimal front
ablation study evaluated
200 representative points
shown significant promise
ecg signal processing
crayfish optimization algorithm
bih arrhythmia database
finite element model
simulate cardiac electrophysiology
div >< p
ecg signal classification
deep attention modules
attention network based
deep attention model
proposed deep vmd
generated using mocoa
attention network
cardiac electrophysiology
deep model
arrhythmia classification
proposed model
deep vmd
attention modeling
significant anomalies
lstm modules
ecg signals
ecg data
bayesian optimization
model based
increasingly based
classification strategy
arrhythmia characterized
world mit
vmd achieves
vmd ),
two types
spectral kurtosis
recent research
often neglect
mocoa ).
mathematical foundations
kl divergence
key parameters
k </
human heart
highest accuracy
driven approaches
dominated sorting
dc.title.none.fl_str_mv Kurtograms of different signals.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>(A) Kurtogram of signal 0. (B) Kurtogram of signal 1. (C) Kurtogram of signal 2. X-axis represents the frequency bands, Y-axis represents the resolution levels, color intensity represents the kurtosis value (higher intensity indicates higher kurtosis). Kurtograms exhibit similar impulses components but differentiated characteristics of the kurtosis values across three signals.</p>
eu_rights_str_mv openAccess
id Manara_c076fe8cb47a6739ff553aba994f9d4e
identifier_str_mv 10.1371/journal.pone.0321484.g008
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29075244
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Kurtograms of different signals.Hang Zhao (143592)Xiongfei Yin (21368130)PhysiologyBiotechnologyEcologySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedvariational mode decompositionsignal processing fieldspareto optimal frontablation study evaluated200 representative pointsshown significant promiseecg signal processingcrayfish optimization algorithmbih arrhythmia databasefinite element modelsimulate cardiac electrophysiologydiv >< pecg signal classificationdeep attention modulesattention network baseddeep attention modelproposed deep vmdgenerated using mocoaattention networkcardiac electrophysiologydeep modelarrhythmia classificationproposed modeldeep vmdattention modelingsignificant anomalieslstm modulesecg signalsecg databayesian optimizationmodel basedincreasingly basedclassification strategyarrhythmia characterizedworld mitvmd achievesvmd ),two typesspectral kurtosisrecent researchoften neglectmocoa ).mathematical foundationskl divergencekey parametersk </human hearthighest accuracydriven approachesdominated sorting<p>(A) Kurtogram of signal 0. (B) Kurtogram of signal 1. (C) Kurtogram of signal 2. X-axis represents the frequency bands, Y-axis represents the resolution levels, color intensity represents the kurtosis value (higher intensity indicates higher kurtosis). Kurtograms exhibit similar impulses components but differentiated characteristics of the kurtosis values across three signals.</p>2025-05-15T15:01:35ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0321484.g008https://figshare.com/articles/figure/Kurtograms_of_different_signals_/29075244CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/290752442025-05-15T15:01:35Z
spellingShingle Kurtograms of different signals.
Hang Zhao (143592)
Physiology
Biotechnology
Ecology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
variational mode decomposition
signal processing fields
pareto optimal front
ablation study evaluated
200 representative points
shown significant promise
ecg signal processing
crayfish optimization algorithm
bih arrhythmia database
finite element model
simulate cardiac electrophysiology
div >< p
ecg signal classification
deep attention modules
attention network based
deep attention model
proposed deep vmd
generated using mocoa
attention network
cardiac electrophysiology
deep model
arrhythmia classification
proposed model
deep vmd
attention modeling
significant anomalies
lstm modules
ecg signals
ecg data
bayesian optimization
model based
increasingly based
classification strategy
arrhythmia characterized
world mit
vmd achieves
vmd ),
two types
spectral kurtosis
recent research
often neglect
mocoa ).
mathematical foundations
kl divergence
key parameters
k </
human heart
highest accuracy
driven approaches
dominated sorting
status_str publishedVersion
title Kurtograms of different signals.
title_full Kurtograms of different signals.
title_fullStr Kurtograms of different signals.
title_full_unstemmed Kurtograms of different signals.
title_short Kurtograms of different signals.
title_sort Kurtograms of different signals.
topic Physiology
Biotechnology
Ecology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
variational mode decomposition
signal processing fields
pareto optimal front
ablation study evaluated
200 representative points
shown significant promise
ecg signal processing
crayfish optimization algorithm
bih arrhythmia database
finite element model
simulate cardiac electrophysiology
div >< p
ecg signal classification
deep attention modules
attention network based
deep attention model
proposed deep vmd
generated using mocoa
attention network
cardiac electrophysiology
deep model
arrhythmia classification
proposed model
deep vmd
attention modeling
significant anomalies
lstm modules
ecg signals
ecg data
bayesian optimization
model based
increasingly based
classification strategy
arrhythmia characterized
world mit
vmd achieves
vmd ),
two types
spectral kurtosis
recent research
often neglect
mocoa ).
mathematical foundations
kl divergence
key parameters
k </
human heart
highest accuracy
driven approaches
dominated sorting