IDWE_CHM (NRT_F)

<p dir="ltr">A near-real-time (NRT) extension of the IDWE_CHM dataset with ongoing daily updates beyond 2023. This NRT product continues to apply the IDWE framework on incoming data, thereby extending the record in near real-time. Users can obtain timely precipitation estimates with...

Full description

Saved in:
Bibliographic Details
Main Author: Hao Chen (11770646) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852014345987293184
author Hao Chen (11770646)
author_facet Hao Chen (11770646)
author_role author
dc.creator.none.fl_str_mv Hao Chen (11770646)
dc.date.none.fl_str_mv 2025-12-02T02:19:49Z
dc.identifier.none.fl_str_mv 10.6084/m9.figshare.28616207.v11
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/IDWE_CHM_NRT_/28616207
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Climatology
Surface water hydrology
Precipitation
Ensemble
Incremental Dynamic Weighting Ensemble
Near-real-time
dc.title.none.fl_str_mv IDWE_CHM (NRT_F)
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p dir="ltr">A near-real-time (NRT) extension of the IDWE_CHM dataset with ongoing daily updates beyond 2023. This NRT product continues to apply the IDWE framework on incoming data, thereby extending the record in near real-time. Users can obtain timely precipitation estimates with the same ~0.1° resolution and methodology consistency as the historical dataset.</p><p dir="ltr">For a comprehensive description of the project, please refer to:<br><b>An Incremental Dynamic Weighting Ensemble Framework for Long-Term and NRT Precipitation Prediction</b><br><a href="https://figshare.com/projects/An_Incremental_Dynamic_Weighting_Ensemble_Framework_for_Long-Term_and_NRT_Precipitation_Prediction/241619" rel="noreferrer" target="_blank">https://figshare.com/projects/An_Incremental_Dynamic_Weighting_Ensemble_Framework_for_Long-Term_and_NRT_Precipitation_Prediction/241619</a></p><p><br></p><p dir="ltr">The IDWE_CHM dataset provides <b>four precipitation variables</b>, all derived from the ensemble framework but with slightly different modeling approaches:</p><ul><li><b>ENS_Reg</b> – A purely regression-based merged precipitation estimate. This product is generated by optimally weighting and combining the input datasets (ERA5-Land, IMERG, GSMaP, etc.) using regression, without additional classification. It serves as a baseline for the IDWE approach.</li><li><b>ENS_RegCla1</b>, <b>ENS_RegCla2</b>, <b>ENS_RegCla3</b> – Three variants of a hybrid <i>regression-plus-classification</i> approach (collectively called <b>ENS_RegCla</b>). These are produced by first applying the regression merging (as in ENS_Reg) and then using a classification step to adjust the estimates. The classification is enhanced with incremental learning, meaning the algorithm learns from errors over time. These three variants may correspond to different configurations or epochs of incremental learning, and they generally show improved skill in capturing precipitation occurrence and extremes compared to a regression-only merge.</li></ul><p dir="ltr">The updates of IDWE_CHM (NRT_F) are temporally coordinated with those of the five datasets integrated in the fusion process, with explicit synchronization maintained for the GPM_3IMERGDF dataset (available at: <a href="https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDF.07" rel="noreferrer" target="_blank">https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDF.07</a>), which exhibits relative latency compared to other fused datasets.</p>
eu_rights_str_mv openAccess
id Manara_c131c0c034306ee2a5f2d4bb7196ca49
identifier_str_mv 10.6084/m9.figshare.28616207.v11
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28616207
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling IDWE_CHM (NRT_F)Hao Chen (11770646)ClimatologySurface water hydrologyPrecipitationEnsembleIncremental Dynamic Weighting EnsembleNear-real-time<p dir="ltr">A near-real-time (NRT) extension of the IDWE_CHM dataset with ongoing daily updates beyond 2023. This NRT product continues to apply the IDWE framework on incoming data, thereby extending the record in near real-time. Users can obtain timely precipitation estimates with the same ~0.1° resolution and methodology consistency as the historical dataset.</p><p dir="ltr">For a comprehensive description of the project, please refer to:<br><b>An Incremental Dynamic Weighting Ensemble Framework for Long-Term and NRT Precipitation Prediction</b><br><a href="https://figshare.com/projects/An_Incremental_Dynamic_Weighting_Ensemble_Framework_for_Long-Term_and_NRT_Precipitation_Prediction/241619" rel="noreferrer" target="_blank">https://figshare.com/projects/An_Incremental_Dynamic_Weighting_Ensemble_Framework_for_Long-Term_and_NRT_Precipitation_Prediction/241619</a></p><p><br></p><p dir="ltr">The IDWE_CHM dataset provides <b>four precipitation variables</b>, all derived from the ensemble framework but with slightly different modeling approaches:</p><ul><li><b>ENS_Reg</b> – A purely regression-based merged precipitation estimate. This product is generated by optimally weighting and combining the input datasets (ERA5-Land, IMERG, GSMaP, etc.) using regression, without additional classification. It serves as a baseline for the IDWE approach.</li><li><b>ENS_RegCla1</b>, <b>ENS_RegCla2</b>, <b>ENS_RegCla3</b> – Three variants of a hybrid <i>regression-plus-classification</i> approach (collectively called <b>ENS_RegCla</b>). These are produced by first applying the regression merging (as in ENS_Reg) and then using a classification step to adjust the estimates. The classification is enhanced with incremental learning, meaning the algorithm learns from errors over time. These three variants may correspond to different configurations or epochs of incremental learning, and they generally show improved skill in capturing precipitation occurrence and extremes compared to a regression-only merge.</li></ul><p dir="ltr">The updates of IDWE_CHM (NRT_F) are temporally coordinated with those of the five datasets integrated in the fusion process, with explicit synchronization maintained for the GPM_3IMERGDF dataset (available at: <a href="https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDF.07" rel="noreferrer" target="_blank">https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGDF.07</a>), which exhibits relative latency compared to other fused datasets.</p>2025-12-02T02:19:49ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.6084/m9.figshare.28616207.v11https://figshare.com/articles/dataset/IDWE_CHM_NRT_/28616207CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/286162072025-12-02T02:19:49Z
spellingShingle IDWE_CHM (NRT_F)
Hao Chen (11770646)
Climatology
Surface water hydrology
Precipitation
Ensemble
Incremental Dynamic Weighting Ensemble
Near-real-time
status_str publishedVersion
title IDWE_CHM (NRT_F)
title_full IDWE_CHM (NRT_F)
title_fullStr IDWE_CHM (NRT_F)
title_full_unstemmed IDWE_CHM (NRT_F)
title_short IDWE_CHM (NRT_F)
title_sort IDWE_CHM (NRT_F)
topic Climatology
Surface water hydrology
Precipitation
Ensemble
Incremental Dynamic Weighting Ensemble
Near-real-time