Models’ performance when using Hybridsampling quadruple size to balance the training dataset.

<p>Models’ performance when using Hybridsampling quadruple size to balance the training dataset.</p>

Saved in:
Bibliographic Details
Main Author: Anna Beatriz Silva (20989245) (author)
Other Authors: Elisson da Silva Rocha (17222272) (author), João Fausto Lorenzato (20989248) (author), Patricia Takako Endo (10373252) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852021595914108928
author Anna Beatriz Silva (20989245)
author2 Elisson da Silva Rocha (17222272)
João Fausto Lorenzato (20989248)
Patricia Takako Endo (10373252)
author2_role author
author
author
author_facet Anna Beatriz Silva (20989245)
Elisson da Silva Rocha (17222272)
João Fausto Lorenzato (20989248)
Patricia Takako Endo (10373252)
author_role author
dc.creator.none.fl_str_mv Anna Beatriz Silva (20989245)
Elisson da Silva Rocha (17222272)
João Fausto Lorenzato (20989248)
Patricia Takako Endo (10373252)
dc.date.none.fl_str_mv 2025-04-02T20:04:58Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0316574.g008
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Models_performance_when_using_Hybridsampling_quadruple_size_to_balance_the_training_dataset_/28719447
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Science Policy
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
three hybridsampling configurations
risk pregnancies earlier
including decision tree
hybridsampling approach resulted
decision tree model
machine learning models
proper data balancing
premature birth predictions
predictive models
biased predictions
obstetric data
data imbalance
timely interventions
sus ).
results show
random forest
preterm births
preterm birth
performance compared
particularly significant
neonatal deaths
neonatal care
minority class
main cause
factors 2
common problem
70 %,
64 %,
37 weeks
000 cases
dc.title.none.fl_str_mv Models’ performance when using Hybridsampling quadruple size to balance the training dataset.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Models’ performance when using Hybridsampling quadruple size to balance the training dataset.</p>
eu_rights_str_mv openAccess
id Manara_c3bcc13dcbefde15cbdb9f406574b310
identifier_str_mv 10.1371/journal.pone.0316574.g008
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28719447
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Models’ performance when using Hybridsampling quadruple size to balance the training dataset.Anna Beatriz Silva (20989245)Elisson da Silva Rocha (17222272)João Fausto Lorenzato (20989248)Patricia Takako Endo (10373252)Science PolicyBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedthree hybridsampling configurationsrisk pregnancies earlierincluding decision treehybridsampling approach resulteddecision tree modelmachine learning modelsproper data balancingpremature birth predictionspredictive modelsbiased predictionsobstetric datadata imbalancetimely interventionssus ).results showrandom forestpreterm birthspreterm birthperformance comparedparticularly significantneonatal deathsneonatal careminority classmain causefactors 2common problem70 %,64 %,37 weeks000 cases<p>Models’ performance when using Hybridsampling quadruple size to balance the training dataset.</p>2025-04-02T20:04:58ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0316574.g008https://figshare.com/articles/figure/Models_performance_when_using_Hybridsampling_quadruple_size_to_balance_the_training_dataset_/28719447CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/287194472025-04-02T20:04:58Z
spellingShingle Models’ performance when using Hybridsampling quadruple size to balance the training dataset.
Anna Beatriz Silva (20989245)
Science Policy
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
three hybridsampling configurations
risk pregnancies earlier
including decision tree
hybridsampling approach resulted
decision tree model
machine learning models
proper data balancing
premature birth predictions
predictive models
biased predictions
obstetric data
data imbalance
timely interventions
sus ).
results show
random forest
preterm births
preterm birth
performance compared
particularly significant
neonatal deaths
neonatal care
minority class
main cause
factors 2
common problem
70 %,
64 %,
37 weeks
000 cases
status_str publishedVersion
title Models’ performance when using Hybridsampling quadruple size to balance the training dataset.
title_full Models’ performance when using Hybridsampling quadruple size to balance the training dataset.
title_fullStr Models’ performance when using Hybridsampling quadruple size to balance the training dataset.
title_full_unstemmed Models’ performance when using Hybridsampling quadruple size to balance the training dataset.
title_short Models’ performance when using Hybridsampling quadruple size to balance the training dataset.
title_sort Models’ performance when using Hybridsampling quadruple size to balance the training dataset.
topic Science Policy
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
three hybridsampling configurations
risk pregnancies earlier
including decision tree
hybridsampling approach resulted
decision tree model
machine learning models
proper data balancing
premature birth predictions
predictive models
biased predictions
obstetric data
data imbalance
timely interventions
sus ).
results show
random forest
preterm births
preterm birth
performance compared
particularly significant
neonatal deaths
neonatal care
minority class
main cause
factors 2
common problem
70 %,
64 %,
37 weeks
000 cases