Change Point Detection in Pairwise Comparison Data with Covariates

<p>This paper introduces the novel piecewise stationary covariate-assisted ranking estimation (PS-CARE) model for analyzing time-evolving pairwise comparison data, enhancing item ranking accuracy through the integration of covariate information. By partitioning the data into distinct, stationa...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Yi Han (194901) (author)
مؤلفون آخرون: Thomas C. M. Lee (7372220) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852015235797352448
author Yi Han (194901)
author2 Thomas C. M. Lee (7372220)
author2_role author
author_facet Yi Han (194901)
Thomas C. M. Lee (7372220)
author_role author
dc.creator.none.fl_str_mv Yi Han (194901)
Thomas C. M. Lee (7372220)
dc.date.none.fl_str_mv 2025-10-31T20:00:07Z
dc.identifier.none.fl_str_mv 10.6084/m9.figshare.30505906.v1
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Change_Point_Detection_in_Pairwise_Comparison_Data_with_Covariates/30505906
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Science Policy
Infectious Diseases
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
Bradley-Terry-Luce model
covariate-assisted ranking estimation (CARE) model
minimum description length (MDL)
pruned exact linear time (PELT) algorithm
ranking problem
dc.title.none.fl_str_mv Change Point Detection in Pairwise Comparison Data with Covariates
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>This paper introduces the novel piecewise stationary covariate-assisted ranking estimation (PS-CARE) model for analyzing time-evolving pairwise comparison data, enhancing item ranking accuracy through the integration of covariate information. By partitioning the data into distinct, stationary segments, the PS-CARE model adeptly detects temporal shifts in item rankings, known as change points, whose number and positions are initially unknown. Leveraging the minimum description length (MDL) principle, this paper establishes a statistically consistent model selection criterion to estimate these unknowns. The practical optimization of this MDL criterion is done with the pruned exact linear time (PELT) algorithm. Empirical evaluations reveal the method’s promising performance in accurately locating change points across various simulated scenarios. An application to an NBA dataset yielded meaningful insights that aligned with significant historical events, highlighting the method’s practical utility and the MDL criterion’s effectiveness in capturing temporal ranking changes. To the best of the authors’ knowledge, this research pioneers change point detection in pairwise comparison data with covariate information, representing a significant leap forward in the field of dynamic ranking analysis.</p>
eu_rights_str_mv openAccess
id Manara_c53c8e2fda71cf1da031cd557e155ddc
identifier_str_mv 10.6084/m9.figshare.30505906.v1
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30505906
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Change Point Detection in Pairwise Comparison Data with CovariatesYi Han (194901)Thomas C. M. Lee (7372220)BiochemistryScience PolicyInfectious DiseasesBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedBradley-Terry-Luce modelcovariate-assisted ranking estimation (CARE) modelminimum description length (MDL)pruned exact linear time (PELT) algorithmranking problem<p>This paper introduces the novel piecewise stationary covariate-assisted ranking estimation (PS-CARE) model for analyzing time-evolving pairwise comparison data, enhancing item ranking accuracy through the integration of covariate information. By partitioning the data into distinct, stationary segments, the PS-CARE model adeptly detects temporal shifts in item rankings, known as change points, whose number and positions are initially unknown. Leveraging the minimum description length (MDL) principle, this paper establishes a statistically consistent model selection criterion to estimate these unknowns. The practical optimization of this MDL criterion is done with the pruned exact linear time (PELT) algorithm. Empirical evaluations reveal the method’s promising performance in accurately locating change points across various simulated scenarios. An application to an NBA dataset yielded meaningful insights that aligned with significant historical events, highlighting the method’s practical utility and the MDL criterion’s effectiveness in capturing temporal ranking changes. To the best of the authors’ knowledge, this research pioneers change point detection in pairwise comparison data with covariate information, representing a significant leap forward in the field of dynamic ranking analysis.</p>2025-10-31T20:00:07ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.6084/m9.figshare.30505906.v1https://figshare.com/articles/dataset/Change_Point_Detection_in_Pairwise_Comparison_Data_with_Covariates/30505906CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/305059062025-10-31T20:00:07Z
spellingShingle Change Point Detection in Pairwise Comparison Data with Covariates
Yi Han (194901)
Biochemistry
Science Policy
Infectious Diseases
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
Bradley-Terry-Luce model
covariate-assisted ranking estimation (CARE) model
minimum description length (MDL)
pruned exact linear time (PELT) algorithm
ranking problem
status_str publishedVersion
title Change Point Detection in Pairwise Comparison Data with Covariates
title_full Change Point Detection in Pairwise Comparison Data with Covariates
title_fullStr Change Point Detection in Pairwise Comparison Data with Covariates
title_full_unstemmed Change Point Detection in Pairwise Comparison Data with Covariates
title_short Change Point Detection in Pairwise Comparison Data with Covariates
title_sort Change Point Detection in Pairwise Comparison Data with Covariates
topic Biochemistry
Science Policy
Infectious Diseases
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
Bradley-Terry-Luce model
covariate-assisted ranking estimation (CARE) model
minimum description length (MDL)
pruned exact linear time (PELT) algorithm
ranking problem