Figure 3 from <i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target Cholangiocarcinoma

<p><i>Nf2</i> loss results in Ras<sup>G12D</sup>-induced oncogenesis and cooperates with <i>Trp53</i> loss to accelerate ICC formation. <b>A,</b> Kaplan–Meier curve demonstrating the relative survival proportions of mice with KRAS<sup>G12D&...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
מחבר ראשי: Nicholas T. Younger (14956251) (author)
מחברים אחרים: Mollie L. Wilson (14956254) (author), Anabel Martinez Lyons (14956257) (author), Edward J. Jarman (9773166) (author), Alison M. Meynert (14956260) (author), Graeme R. Grimes (14160170) (author), Konstantinos Gournopanos (14956263) (author), Scott H. Waddell (14956266) (author), Peter A. Tennant (14956269) (author), David H. Wilson (14956272) (author), Rachel V. Guest (14956275) (author), Stephen J. Wigmore (14915943) (author), Juan Carlos Acosta (14956278) (author), Timothy J. Kendall (14956281) (author), Martin S. Taylor (14956284) (author), Duncan Sproul (13971883) (author), Pleasantine Mill (256953) (author), Luke Boulter (14956287) (author)
יצא לאור: 2025
נושאים:
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
_version_ 1849927640199200768
author Nicholas T. Younger (14956251)
author2 Mollie L. Wilson (14956254)
Anabel Martinez Lyons (14956257)
Edward J. Jarman (9773166)
Alison M. Meynert (14956260)
Graeme R. Grimes (14160170)
Konstantinos Gournopanos (14956263)
Scott H. Waddell (14956266)
Peter A. Tennant (14956269)
David H. Wilson (14956272)
Rachel V. Guest (14956275)
Stephen J. Wigmore (14915943)
Juan Carlos Acosta (14956278)
Timothy J. Kendall (14956281)
Martin S. Taylor (14956284)
Duncan Sproul (13971883)
Pleasantine Mill (256953)
Luke Boulter (14956287)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author_facet Nicholas T. Younger (14956251)
Mollie L. Wilson (14956254)
Anabel Martinez Lyons (14956257)
Edward J. Jarman (9773166)
Alison M. Meynert (14956260)
Graeme R. Grimes (14160170)
Konstantinos Gournopanos (14956263)
Scott H. Waddell (14956266)
Peter A. Tennant (14956269)
David H. Wilson (14956272)
Rachel V. Guest (14956275)
Stephen J. Wigmore (14915943)
Juan Carlos Acosta (14956278)
Timothy J. Kendall (14956281)
Martin S. Taylor (14956284)
Duncan Sproul (13971883)
Pleasantine Mill (256953)
Luke Boulter (14956287)
author_role author
dc.creator.none.fl_str_mv Nicholas T. Younger (14956251)
Mollie L. Wilson (14956254)
Anabel Martinez Lyons (14956257)
Edward J. Jarman (9773166)
Alison M. Meynert (14956260)
Graeme R. Grimes (14160170)
Konstantinos Gournopanos (14956263)
Scott H. Waddell (14956266)
Peter A. Tennant (14956269)
David H. Wilson (14956272)
Rachel V. Guest (14956275)
Stephen J. Wigmore (14915943)
Juan Carlos Acosta (14956278)
Timothy J. Kendall (14956281)
Martin S. Taylor (14956284)
Duncan Sproul (13971883)
Pleasantine Mill (256953)
Luke Boulter (14956287)
dc.date.none.fl_str_mv 2025-11-24T22:22:13Z
dc.identifier.none.fl_str_mv 10.1158/0008-5472.30698868
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Figure_3_from_i_In_Vivo_i_Modeling_of_Patient_Genetic_Heterogeneity_Identifies_New_Ways_to_Target_Cholangiocarcinoma/30698868
dc.rights.none.fl_str_mv CC BY
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cancer
Cancer Biology
Molecular and Cellular Biology
Therapeutic Research and Development
Methods and Technology
Cell Signaling
Computational Methods
Sequence analysis
Drug Targets
Gastrointestinal Cancers
Liver cancer
Gene Technologies
Comparative genomics
Oncogenes & Tumor Suppressors
Kras
Preclinical Models
Animal models of cancer
dc.title.none.fl_str_mv Figure 3 from <i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target Cholangiocarcinoma
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p><i>Nf2</i> loss results in Ras<sup>G12D</sup>-induced oncogenesis and cooperates with <i>Trp53</i> loss to accelerate ICC formation. <b>A,</b> Kaplan–Meier curve demonstrating the relative survival proportions of mice with KRAS<sup>G12D</sup> and gRNAs targeting <i>Trp53</i> (<i>N</i> = 12), <i>Nf2</i> (<i>N</i> = 5), <i>Nf2</i>;<i>Trp53</i> (<i>N</i> = 13), or nontargeting control (scrm, <i>N</i> = 5). <b>B</b> and <b>C,</b> Proportion of liver occupied by tumor (<b>B</b>) and number of tumors per mouse (<b>C</b>). <b>D,</b> Hematoxylin and eosin (H&E) staining of KRAS<sup>G12D</sup> tumors with <i>Trp53</i>, <i>Nf2</i>, or <i>Trp53</i>;<i>Nf2</i> loss. Scale bar, 100 μm. Dotted line, tumor-stroma boundary. <b>E,</b> Comparison of RNA-seq analysis when the transcriptomes from <i>Nf2</i>;<i>Trp53</i> versus <i>Trp53</i> alone tumors (blue) are compared with transcripts from <i>Nf2</i>;<i>Trp53</i> versus <i>Nf2</i> alone (yellow) tumors. Each group contains <i>N</i> = 4 regionally distinct tumors. <b>F,</b> Analysis of RPPA data demonstrating the changes in the proportion of phosphorylated GSK3α/β, β-catenin, and pAKT relative to total protein levels in KRAS<sup>G12D</sup>;<i>Trp53</i><sup>KO</sup> (gray points), KRAS<sup>G12D</sup>;<i>Nf2</i><sup>KO</sup> (yellow points), KRAS<sup>G12D</sup>;<i>Trp53</i><sup>KO</sup>;<i>Nf2</i><sup>KO</sup> (blue points). <b>G,</b> IHC of active, dephosphorylated β-catenin (top) and phosphorylated AKT<sup>Ser647</sup> (bottom) in KRAS<sup>G12D</sup>;<i>Trp53</i><sup>KO</sup>, KRAS<sup>G12D</sup>;<i>Nf2</i><sup>KO</sup>, KRAS<sup>G12D</sup>;<i>Trp53</i><sup>KO</sup>/<i>Nf2</i><sup>KO</sup> tumors. Scale bar, 50 μm. <b>H.</b> Immunoblot for dephosphorylated (active) β-catenin (β-catenin<sup>Ser33/37/Thr41</sup>) in tumors isolated from mice baring Kras<sup>G12D</sup> -driven ICC with <i>Trp53</i>, <i>Nf2</i>, or <i>Trp53</i>;<i>Nf2</i> co-loss. GAPDH was used as a loading control. <b>I,</b> Schematic representing our dosing approach to determine whether Wnt inhibition, PI3K inhibition, or a combination of the two is effective in improving the survival of mice with KRAS<sup>G12D</sup>;<i>Trp53</i><sup>KO</sup>;<i>Nf2</i><sup>KO</sup> ICC. <b>J,</b> Kaplan–Meier curve demonstrating the survival changes when KRAS<sup>G12D</sup>;<i>Trp53</i><sup>KO</sup>;<i>Nf2</i><sup>KO</sup> animals are treated with vehicle (yellow line), LGK974 (Wnt-inhibitor; blue line), pictilisib (PI3K inhibitor; orange line), or a combination (green line; <i>N</i> = 5 per group).</p>
eu_rights_str_mv openAccess
id Manara_c63815199bb68866bb56b7d86e2a7fd7
identifier_str_mv 10.1158/0008-5472.30698868
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30698868
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY
spelling Figure 3 from <i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target CholangiocarcinomaNicholas T. Younger (14956251)Mollie L. Wilson (14956254)Anabel Martinez Lyons (14956257)Edward J. Jarman (9773166)Alison M. Meynert (14956260)Graeme R. Grimes (14160170)Konstantinos Gournopanos (14956263)Scott H. Waddell (14956266)Peter A. Tennant (14956269)David H. Wilson (14956272)Rachel V. Guest (14956275)Stephen J. Wigmore (14915943)Juan Carlos Acosta (14956278)Timothy J. Kendall (14956281)Martin S. Taylor (14956284)Duncan Sproul (13971883)Pleasantine Mill (256953)Luke Boulter (14956287)CancerCancer BiologyMolecular and Cellular BiologyTherapeutic Research and DevelopmentMethods and TechnologyCell SignalingComputational MethodsSequence analysisDrug TargetsGastrointestinal CancersLiver cancerGene TechnologiesComparative genomicsOncogenes & Tumor SuppressorsKrasPreclinical ModelsAnimal models of cancer<p><i>Nf2</i> loss results in Ras<sup>G12D</sup>-induced oncogenesis and cooperates with <i>Trp53</i> loss to accelerate ICC formation. <b>A,</b> Kaplan–Meier curve demonstrating the relative survival proportions of mice with KRAS<sup>G12D</sup> and gRNAs targeting <i>Trp53</i> (<i>N</i> = 12), <i>Nf2</i> (<i>N</i> = 5), <i>Nf2</i>;<i>Trp53</i> (<i>N</i> = 13), or nontargeting control (scrm, <i>N</i> = 5). <b>B</b> and <b>C,</b> Proportion of liver occupied by tumor (<b>B</b>) and number of tumors per mouse (<b>C</b>). <b>D,</b> Hematoxylin and eosin (H&E) staining of KRAS<sup>G12D</sup> tumors with <i>Trp53</i>, <i>Nf2</i>, or <i>Trp53</i>;<i>Nf2</i> loss. Scale bar, 100 μm. Dotted line, tumor-stroma boundary. <b>E,</b> Comparison of RNA-seq analysis when the transcriptomes from <i>Nf2</i>;<i>Trp53</i> versus <i>Trp53</i> alone tumors (blue) are compared with transcripts from <i>Nf2</i>;<i>Trp53</i> versus <i>Nf2</i> alone (yellow) tumors. Each group contains <i>N</i> = 4 regionally distinct tumors. <b>F,</b> Analysis of RPPA data demonstrating the changes in the proportion of phosphorylated GSK3α/β, β-catenin, and pAKT relative to total protein levels in KRAS<sup>G12D</sup>;<i>Trp53</i><sup>KO</sup> (gray points), KRAS<sup>G12D</sup>;<i>Nf2</i><sup>KO</sup> (yellow points), KRAS<sup>G12D</sup>;<i>Trp53</i><sup>KO</sup>;<i>Nf2</i><sup>KO</sup> (blue points). <b>G,</b> IHC of active, dephosphorylated β-catenin (top) and phosphorylated AKT<sup>Ser647</sup> (bottom) in KRAS<sup>G12D</sup>;<i>Trp53</i><sup>KO</sup>, KRAS<sup>G12D</sup>;<i>Nf2</i><sup>KO</sup>, KRAS<sup>G12D</sup>;<i>Trp53</i><sup>KO</sup>/<i>Nf2</i><sup>KO</sup> tumors. Scale bar, 50 μm. <b>H.</b> Immunoblot for dephosphorylated (active) β-catenin (β-catenin<sup>Ser33/37/Thr41</sup>) in tumors isolated from mice baring Kras<sup>G12D</sup> -driven ICC with <i>Trp53</i>, <i>Nf2</i>, or <i>Trp53</i>;<i>Nf2</i> co-loss. GAPDH was used as a loading control. <b>I,</b> Schematic representing our dosing approach to determine whether Wnt inhibition, PI3K inhibition, or a combination of the two is effective in improving the survival of mice with KRAS<sup>G12D</sup>;<i>Trp53</i><sup>KO</sup>;<i>Nf2</i><sup>KO</sup> ICC. <b>J,</b> Kaplan–Meier curve demonstrating the survival changes when KRAS<sup>G12D</sup>;<i>Trp53</i><sup>KO</sup>;<i>Nf2</i><sup>KO</sup> animals are treated with vehicle (yellow line), LGK974 (Wnt-inhibitor; blue line), pictilisib (PI3K inhibitor; orange line), or a combination (green line; <i>N</i> = 5 per group).</p>2025-11-24T22:22:13ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1158/0008-5472.30698868https://figshare.com/articles/figure/Figure_3_from_i_In_Vivo_i_Modeling_of_Patient_Genetic_Heterogeneity_Identifies_New_Ways_to_Target_Cholangiocarcinoma/30698868CC BYinfo:eu-repo/semantics/openAccessoai:figshare.com:article/306988682025-11-24T22:22:13Z
spellingShingle Figure 3 from <i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target Cholangiocarcinoma
Nicholas T. Younger (14956251)
Cancer
Cancer Biology
Molecular and Cellular Biology
Therapeutic Research and Development
Methods and Technology
Cell Signaling
Computational Methods
Sequence analysis
Drug Targets
Gastrointestinal Cancers
Liver cancer
Gene Technologies
Comparative genomics
Oncogenes & Tumor Suppressors
Kras
Preclinical Models
Animal models of cancer
status_str publishedVersion
title Figure 3 from <i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target Cholangiocarcinoma
title_full Figure 3 from <i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target Cholangiocarcinoma
title_fullStr Figure 3 from <i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target Cholangiocarcinoma
title_full_unstemmed Figure 3 from <i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target Cholangiocarcinoma
title_short Figure 3 from <i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target Cholangiocarcinoma
title_sort Figure 3 from <i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target Cholangiocarcinoma
topic Cancer
Cancer Biology
Molecular and Cellular Biology
Therapeutic Research and Development
Methods and Technology
Cell Signaling
Computational Methods
Sequence analysis
Drug Targets
Gastrointestinal Cancers
Liver cancer
Gene Technologies
Comparative genomics
Oncogenes & Tumor Suppressors
Kras
Preclinical Models
Animal models of cancer