Human sentiment annotation for isiXhosa and isiZulu.

<p>Human sentiment annotation for isiXhosa and isiZulu.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Koena Ronny Mabokela (21492394) (author)
مؤلفون آخرون: Mpho Primus (21492397) (author), Turgay Celik (14378019) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852019613525606400
author Koena Ronny Mabokela (21492394)
author2 Mpho Primus (21492397)
Turgay Celik (14378019)
author2_role author
author
author_facet Koena Ronny Mabokela (21492394)
Mpho Primus (21492397)
Turgay Celik (14378019)
author_role author
dc.creator.none.fl_str_mv Koena Ronny Mabokela (21492394)
Mpho Primus (21492397)
Turgay Celik (14378019)
dc.date.none.fl_str_mv 2025-06-05T17:33:58Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0325102.t005
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Human_sentiment_annotation_for_isiXhosa_and_isiZulu_/29248513
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Ecology
Sociology
Immunology
Science Policy
Biological Sciences not elsewhere classified
population without access
leverage existing plms
twitter sentiment dataset
african languages poses
advancing sentiment analysis
trained language models
div >< p
related languages achieved
existing multilingual plms
sentiment analysis
related languages
labelled dataset
multilingual plms
multilingual pre
developing plms
resource languages
native languages
world ’
work expands
tswana ),
task adaptation
specific task
significant portion
setswana </
sesotho </
sepedi </
safrisenti </
promising approach
paper explores
large data
isizulu </
isixhosa </
gap leaves
findings demonstrate
avoiding training
alternative solution
63 %.
dc.title.none.fl_str_mv Human sentiment annotation for isiXhosa and isiZulu.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Human sentiment annotation for isiXhosa and isiZulu.</p>
eu_rights_str_mv openAccess
id Manara_c6c1bc7113000eccc8a7fddfce586fdb
identifier_str_mv 10.1371/journal.pone.0325102.t005
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29248513
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Human sentiment annotation for isiXhosa and isiZulu.Koena Ronny Mabokela (21492394)Mpho Primus (21492397)Turgay Celik (14378019)EcologySociologyImmunologyScience PolicyBiological Sciences not elsewhere classifiedpopulation without accessleverage existing plmstwitter sentiment datasetafrican languages posesadvancing sentiment analysistrained language modelsdiv >< prelated languages achievedexisting multilingual plmssentiment analysisrelated languageslabelled datasetmultilingual plmsmultilingual predeveloping plmsresource languagesnative languagesworld ’work expandstswana ),task adaptationspecific tasksignificant portionsetswana </sesotho </sepedi </safrisenti </promising approachpaper exploreslarge dataisizulu </isixhosa </gap leavesfindings demonstrateavoiding trainingalternative solution63 %.<p>Human sentiment annotation for isiXhosa and isiZulu.</p>2025-06-05T17:33:58ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0325102.t005https://figshare.com/articles/dataset/Human_sentiment_annotation_for_isiXhosa_and_isiZulu_/29248513CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/292485132025-06-05T17:33:58Z
spellingShingle Human sentiment annotation for isiXhosa and isiZulu.
Koena Ronny Mabokela (21492394)
Ecology
Sociology
Immunology
Science Policy
Biological Sciences not elsewhere classified
population without access
leverage existing plms
twitter sentiment dataset
african languages poses
advancing sentiment analysis
trained language models
div >< p
related languages achieved
existing multilingual plms
sentiment analysis
related languages
labelled dataset
multilingual plms
multilingual pre
developing plms
resource languages
native languages
world ’
work expands
tswana ),
task adaptation
specific task
significant portion
setswana </
sesotho </
sepedi </
safrisenti </
promising approach
paper explores
large data
isizulu </
isixhosa </
gap leaves
findings demonstrate
avoiding training
alternative solution
63 %.
status_str publishedVersion
title Human sentiment annotation for isiXhosa and isiZulu.
title_full Human sentiment annotation for isiXhosa and isiZulu.
title_fullStr Human sentiment annotation for isiXhosa and isiZulu.
title_full_unstemmed Human sentiment annotation for isiXhosa and isiZulu.
title_short Human sentiment annotation for isiXhosa and isiZulu.
title_sort Human sentiment annotation for isiXhosa and isiZulu.
topic Ecology
Sociology
Immunology
Science Policy
Biological Sciences not elsewhere classified
population without access
leverage existing plms
twitter sentiment dataset
african languages poses
advancing sentiment analysis
trained language models
div >< p
related languages achieved
existing multilingual plms
sentiment analysis
related languages
labelled dataset
multilingual plms
multilingual pre
developing plms
resource languages
native languages
world ’
work expands
tswana ),
task adaptation
specific task
significant portion
setswana </
sesotho </
sepedi </
safrisenti </
promising approach
paper explores
large data
isizulu </
isixhosa </
gap leaves
findings demonstrate
avoiding training
alternative solution
63 %.